The French and Dutch governments welcome the decision of the EuroHPC joint venture to host and operate a new European Exascale supercomputer in France

Article originally published on the enseignementsup website here

After its acquisition by EuroHPC, this supercomputer will be hosted at the TGCC of CEA by the end of 2025. The Jules Verne consortium aims to deploy a world-class Exascale supercomputer, based on European technologies. It will address major societal and scientific challenges such as climate change, new materials, and personalized medicine. The total cost amounts to 542 million euros, funded by EuroHPC, France, and the Netherlands. The NumPEx program will contribute to software development for these machines.

“The approval by EuroHPC of the Jules Verne consortium’s application is excellent news for French and European research. It marks a significant step forward in securing funding for an Exascale-class supercomputer, with a total value of 542 million euros.

These computing resources will be necessary to tackle the scientific and technological challenges ahead of us, such as climate change, energy transition, or healthcare.”

Said Sylvie Retailleau, French Minister of Higher Education and Research.
And Robbert Dijkgraaf, Dutch Minister of Education, Culture and Science, to conclude:

It’s excellent news that the European scientific community, led by France and the Netherlands, has joined forces to build the supercomputer proposed by the Jules Verne consortium. Europe is thus reaffirming its position in the global research arena. […] With this immense computing power, scientists have a glimpse of the future, enabling them to help solve fundamental societal problems in areas such as healthcare or the fight against climate change.”

Photo credit : Chris Liverani/Unsplash


Super computer abstract futuristic design

What is exascale ?

In today’s world, information has become an essential resource. Massive amounts of data are produced every day, from various sources such as social networks, sensors, scientific simulations, and many more. To efficiently process this data and meet the complex challenges of our time, it is crucial to have powerful computing capabilities.

This is where exascale comes in. Exascale is a measure of computing power that represents one trillion (10^18) floating point operations per second, or one million billion calculations per second. This performance is simply astounding and far exceeds that of all existing supercomputers.

Discover the exascale: The computing power of the future

Numpex reserch project Exascale

The race to exascale :

Since the first electronic computers, the computing power of machines has grown exponentially thanks to the advancement of technologies. As computational demands grew more complex, researchers and engineers set themselves the goal of achieving exascale. This has given rise to a veritable race for innovation in the field of supercomputers.

 

Technological challenges :

Achieving exascale is not just about increasing the speed of processors. This requires a multidimensional approach that integrates several research areas. One of the main challenges is to design more energy-efficient processors capable of processing billions of calculations while minimizing power consumption.

In addition, the architecture of supercomputers must be redesigned to fully exploit the performance of processors. Parallel and distributed architectures, as well as the use of specialized processors like graphics accelerators (GPUs), play a key role in achieving exascale.

 

Exascale applications :

The exascale opens the way to many possibilities in various fields. In science and research, it will enable more accurate and faster simulations, enabling significant advances in fields such as medical research, meteorology, materials physics, astrophysics and many more.

Exascale is also essential for the development of artificial intelligence and machine learning. Deep learning models, which require massive amounts of data and computation, will be able to be trained much faster, enabling faster advancements in these areas.


CNRS photo Exascale interview

PEPR NumPEx : High-Performance Computing and European Sovereignty

Article originally published on the CNRS website here

The Digital Exploratory Exascale Priority Research Program (PEPR), led by CEA, CNRS, and Inria, aims to develop software for future exascale supercomputers, crucial for scientists and industries to leverage these powerful machines.

With a budget of €40.8 million over eight years, PEPR is part of the Exascale France Project and the EuroHPC initiative, which seeks to create a leading supercomputer ecosystem in Europe. In an interview, Michel Daydé, former co-director of the program, explains that PEPR focuses on adapting algorithms and developing new ones to meet the architectural demands of exascale computing, addressing energy consumption challenges, and creating a robust French software stack. This effort will significantly impact fields like climate science, medicine, and industrial applications, bolstering European scientific and industrial competitiveness.



49e forum ORAP NumPEx

49th ORAP Forum : The PEPR Numpex “Digital for Exascale”

29 novembre 2022, Maison de la simulation

The Digital PEPR for Exascale (NUMPEX) aims to design and develop the software components that will equip future exascale machines and prepare the major application areas to fully exploit the capabilities of these machines.

Major fields of application that relate to both scientific research and the industrial sector.

discover the program of the 49th ORAP forum on NumPEx
49e forum ORAP NumPEx