Article originally published on the enseignementsup website here

The European joint venture EuroHPC announces today that it has selected, for the future European supercomputer Exascale, the project carried out in France by the Jules Verne consortium, which brings together France, represented by the Large National Equipment for Intensive Calculation (GENCI) as hosting entity, in collaboration with the French Alternative Energies and Atomic Energy Commission (CEA) as the hosting site, and the Netherlands, represented by SURF, the Dutch National Supercomputing Center.

nuage cloud data

After being acquired by the EuroHPC joint venture, this supercomputer will therefore be hosted at the end of 2025 at the CEA’s Very Large Computing Center (TGCC). It will benefit from the expertise of the latter’s High Performance Computing (HPC) division in the operation of large-scale systems such as Joliot-Curie (GENCI, for open research) and Topaze (CCRT, Center for Computing Research and Technology , for industrial research).

The main objective of the Jules Verne consortium is to deploy a world-class Exascale supercomputer, based on European hardware and software technologies. It will make it possible to respond to the major societal and scientific challenges via the convergence at the scale of digital simulations, the analysis of massive data and artificial intelligence.

Indeed, this project responds to major societal and global challenges corresponding to the national strategies of the Netherlands and France, in particular within the framework of France 2030 for the latter. The supercomputer will act as a sovereign accelerator in the finer modeling of the effects of climate change, in the development of new materials, energies and low-carbon mobility solutions, in the creation of digital twins of the human body allowing personalized medicine or still in training the next generation of generative AI or multimodal models. It will also address the challenges related to the explosion of data generated by scientific instruments (such as telescopes, satellites, sequencers, microscopes, sensor networks, etc. by IoT/Internet devices or by large simulations This avalanche of data makes the use of these supercomputers crucial for science, industry and decision-makers, in order to process this data in competitive timeframes and in the most energy-efficient way possible.

After the deployment of EuroHPC systems such as JUPITER (in Germany), the first Exascale system in Europe in 2024, Jules Verne will provide European, French and Dutch researchers with an unprecedented computing capacity of more than 1 Exaflop/s – one billion billion (“1” followed by 18 zeros) of operations per second, equivalent to over 5 million modern laptops, and over 300 PB of boot storage.

Beyond the machine itself, the Jules Verne consortium, in conjunction with other EuroHPC consortia, will provide support to European researchers for the porting and optimization of their applications on the supercomputer, as well as for training. In this perspective, the Jules Verne consortium will collaborate with all European Centers of Excellence (CoE) and end users for the implementation of the system. It has already established relationships with national R&D Exascale projects (such as the France 2030 NumPEx research program). As a reminder, the NumPEx program aims to design and develop software components that will equip future Exascale machines and prepare the major fields of scientific and industrial applications to fully exploit the capabilities of these machines. The NumPEx program has a budget of 40.8 million euros over 5 years.

The total cost of acquiring and operating the supercomputer for 5 years amounts to 542 million euros. Of this total, 271 million euros are provided by EuroHPC JU, 8 million euros by the Dutch Ministry of Culture, Education and Science and 263 million euros provided by the French Government. ONERA and IFPEN have expressed their intention to join the French part of the consortium, paving the way for other research institutes and French industrialists.

Beyond France and the Netherlands, the Jules Verne consortium is ready to welcome other countries, as partners sharing the same vision in the service of science, innovation and sovereign technologies.


EuroHPC’s approval of the Jules Verne consortium’s application is excellent news for French and European research. This is another important step in securing financing for an Exascale-class supercomputer, worth a total of €542 million.

These means of calculation will be necessary to meet the scientific and technological challenges that await us, such as climate change, energy transition or health. The supercomputer will therefore play a key role in guaranteeing our technological sovereignty and our industrial competitiveness, and I hope that new public and private partners will join the consortium in the coming weeks.

Sylvie Retailleau, French Minister for Higher Education and Research

It is excellent news that the European scientific community, with France and the Netherlands in the lead, is joining forces to produce the supercomputer proposed by the Jules Verne consortium. Europe is thus reaffirming its position on the global research scene. Author Jules Verne has piqued our curiosity with stories about a technological future where one can travel to the Moon or the deep sea. Thanks to this supercomputer, we are doing it again. With this immense computing power, scientists have a glimpse of the future, allowing them to help solve fundamental societal problems in areas such as health or the fight against climate change.

Robbert Dijkgraaf, Dutch Minister of Education, Culture and Science

A billion billion operations per second to accelerate the advent of the future. GENCI is delighted with the announcement by EuroHPC of the selection of the Franco-Dutch consortium Jules Verne to host and operate an Exascale class supercomputer. It is an international recognition of French scientific and technical expertise in combining the applications of digital simulation, massive data analysis, artificial intelligence and soon hybrid quantum computing and by implementing hardware and European software.

Above all, these are the first steps in the era of the Exascale which will allow our national research communities to realize the dream of simulating complex phenomena to solve historical scientific puzzles as well as the possibility of being able to be creative in devices to meet the industrial and societal challenges of energy, innovative materials and health, such as the treatment of neurodegenerative diseases.

Philippe Lavocat, CEO of GENCI

This supercomputer will be an exceptional instrument for European research at the service of European society and sovereignty. It will enable major advances in many fields that are at the heart of CEA’s research activities, such as high-resolution climate modelling, fusion for energy, innovative materials, human digital twins and personalized medicine. It will provide our researchers and industrialists with world-class computing resources to exploit the deluges of data linked to the deployment of new digital systems, autonomously, and thus remain in the global race. The CEA has a long experience of designing and implementing pre-exascale supercomputers in state-of-the-art computing centers.

We will put all our expertise in the design and operation of computing centers at the service of this project, with the objective of performance and control of energy consumption.

François Jacq, General Administrator of the CEA

We are proud to work together in the Jules Verne Consortium to significantly advance research on societal challenges. This supercomputer will help Dutch researchers perform complex simulations in areas ranging from climate science to medicine and astronomy. We are very proud that our experts in large-scale computing, SURF, can contribute to this and thus help researchers in their work.

Jet de Ranitz, CEO of SURF