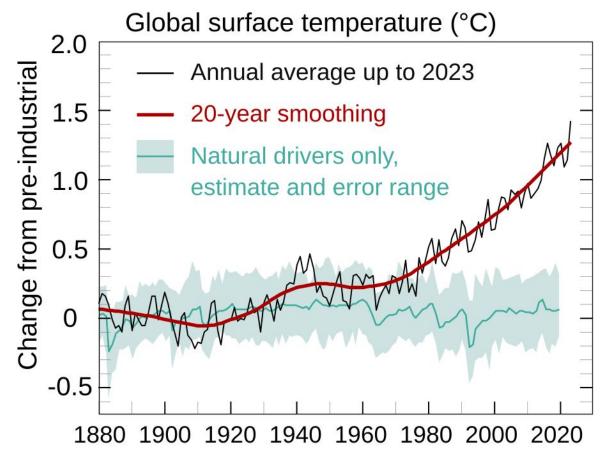


Sustainable computing?

Georges Da Costa

georges.da-costa@irit.fr https://www.irit.fr/~Georges.Da-Costa/

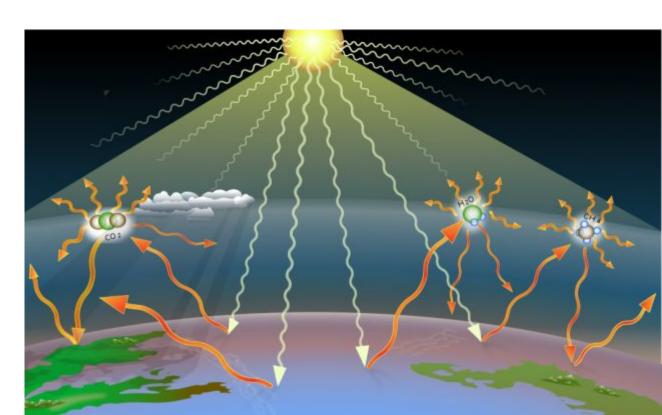
Climate change and energy



An on-going climate change

Global surface temperatures 1880 to 2023 (relative to 1850 – 1900 average)

Source: wikimedia

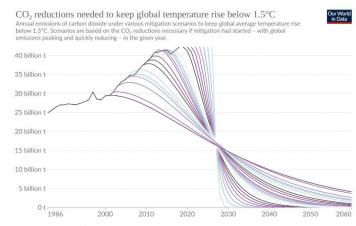

The main source is well known

greenhouse effect

Mostly

- CO.
- H₂O
- CH₄

A loose necktie on Wikimedia Commons

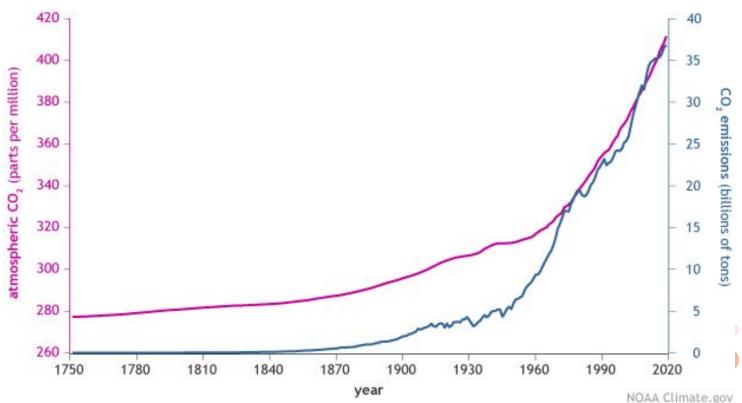

A fragile balance

Historically: 750 GT/year emitted and absorbed

- H₂O and CO₂
- Methane CH₄, nitrous oxide N₂O and ozone O₃
- CO₂, CH₄ and N₂O account for 96% of the
 7 GHGs covered by the Kyoto Protocol

Long duration

• 100 years for CO₂, 9 years for methane

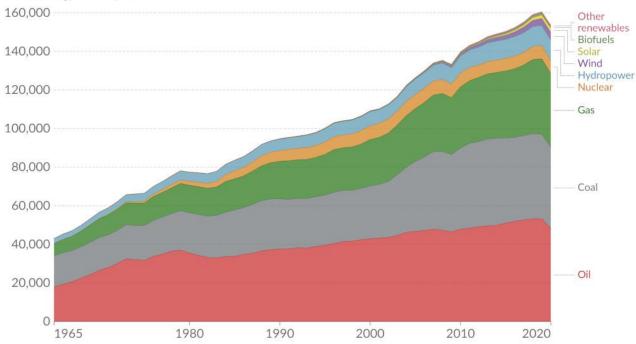


Source: Robbie Andrews (2019); based on Global Carbon Project & IPPC SR15
Note: Carbon budgets are based on a >66% chance of staying below 1.5°C from the IPCC's SR15 Report.
OurWorldInData.org/cg-and-other-greenhouse-gas-emissions < CC BY

CO₂ and industrial revolution

CO, in the atmosphere and annual emissions (1750-2019)

Data: NOAA, ETHZ, Our World in Data

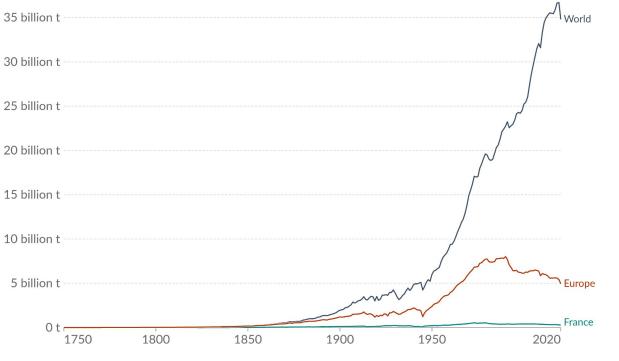


Global energy mix

Energy consumption by source, World

Primary energy consumption is measured in terawatt-hours (TWh). Here an inefficiency factor (the 'substitution' method) has been applied for fossil fuels, meaning the shares by each energy source give a better approximation of final energy consumption.

Source: BP Statistical Review of World Energy Note: 'Other renewables' includes geothermal, biomass and waste energy.



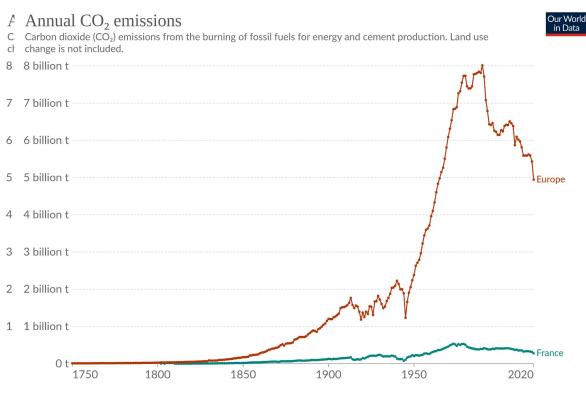
Energy-related CO₂ production

Annual CO₂ emissions

Carbon dioxide (\overline{CO}_2) emissions from the burning of fossil fuels for energy and cement production. Land use change is not included.

Source: Global Carbon Project

OurWorldInData.org/co2-and-other-greenhouse-gas-emissions/ • CC BY


Zoom in Europe and France

CO₂ per person

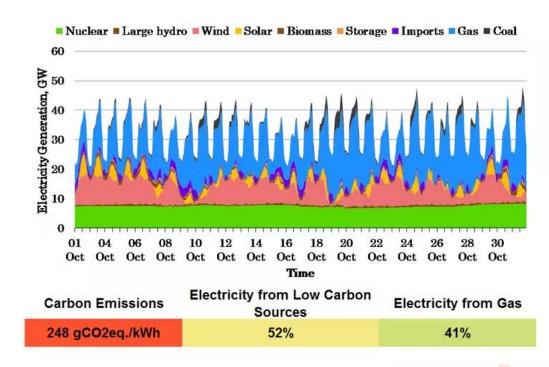
• France: 4.6

• EU: 6.4

WorldBank

The difficulty of 100% renewable energy

Uncontrollable sources


Renewable

Constant sources

Nuclear

Auxiliary sources

 Hydraulic, fuel, coal, ...

British electricity generation in Oct. 2018

Dr Andrew Crossland/MyGridGB

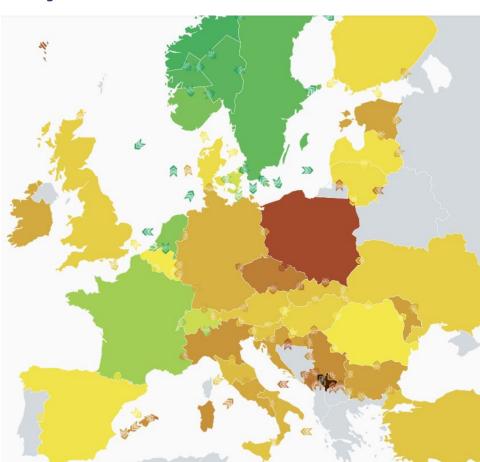
Energy sources

Nothing is carbon-neutral

	Coal	Diesel	Natural gas	Wind turbines	Photovolt aic	Nuclear	Geotherm al	Hydraulic
g CO2 eq/kWh	1000	780	443	14.5	44	66	38	12

Lifespan, production, transport, installation, maintenance

https://bilans-ges.ademe.fr/documentation/UPLOAD_DOC_FR/index.htm?renouvelable.htm

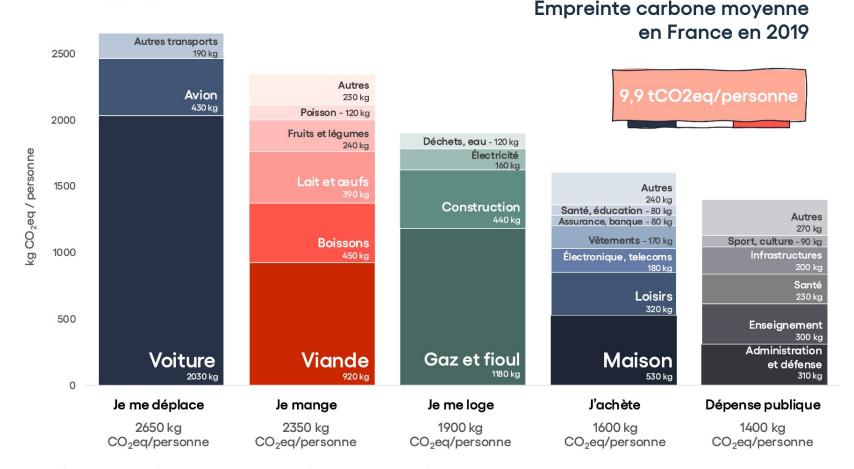


An interconnected system

At multiple levels

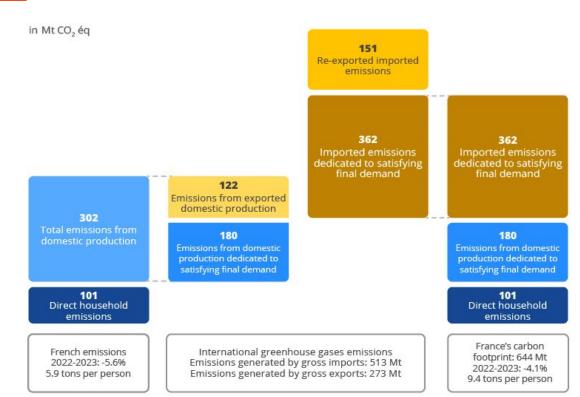
- Regional
- European

https://app.electricitymap.org/map



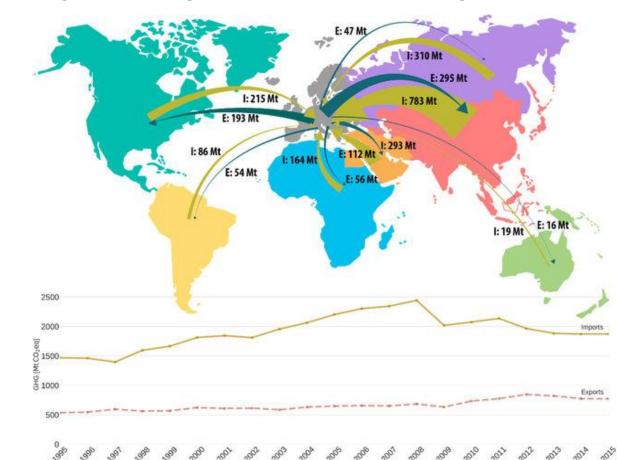
Invisible and visible consumption

Energy Slaves


Gaz inclus : CO2 (hors UTCATF France), CH4, N2O, HFC, SF6, PFC, H₂O (trainées de condensation).

Source : MyCO2 par Carbone 4 d'après le ministère de la Transition écologique, le Haut Conseil pour le Climat, le CITEPA, Agribalyse V3 et INCA 3.

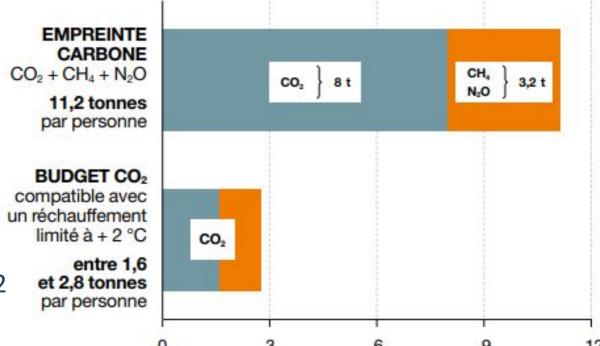
Includes imported emissions


Source **Insee**

European import/export carbon footprint

A global problem

Richard Wood et al. 2019


A change of civilization is needed

Objective

Divide by 6

Current part of the digital sector

• 0.8Teq on the 11.2 GreenIT 2019

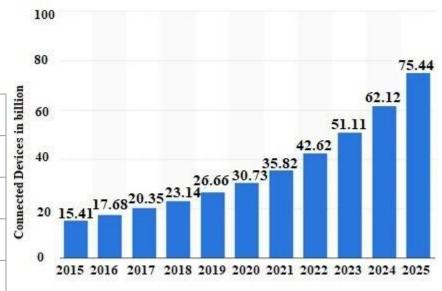
Champ: France métropolitaine + Drom (périmètre Kyoto).

Sources: GIEC; Citepa; AIE; FAO; Douanes; Eurostat; Insee.

Traitements: SDES, 2019

Environmental impact of digital technology

Part 1: The digital world


- 1. Less than 6
- 2. 6 to 10
- 3. More than 10

Connected devices

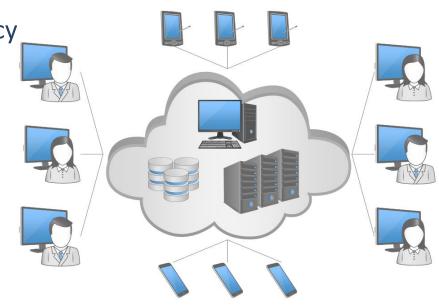
Excluding computers and smartphones

	World	France	
Devices	34 billions	651 millions	
Users	5 billions	58 millions	
Ratio	4	15	
Daily usage	6h42	4h38	

Cloud services

Web sites, banks, snapchat, amazon, ...

Keyword: virtualization / transparency


Independents:

- From the place
- From the device/hardware

Infinite

- Online
- Local

Example of a web page

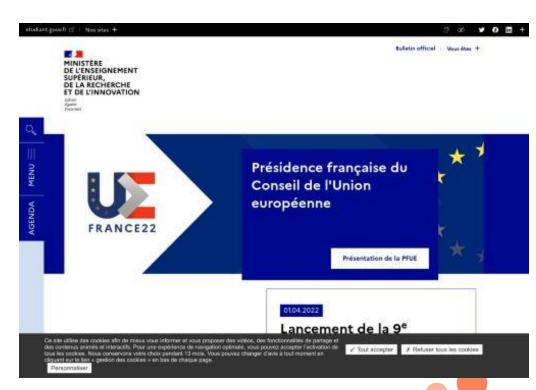
https://www.enseignementsup-recherche.gouv.fr/fr

Browsing this webpage needs

- 1 download
- 2 to 9 downloads
- More than 10 downloads

And encompass the usage of

- 1 remote server
- 4 remote servers
- Impossible to know



Example of a web page

https://www.enseignementsup-recherche.gouv.fr/fr

- 1.50 g of CO2 per visit
- 46 files
- 4.3Mb
- 1.15s of total download

https://www.websitecarbon.com/

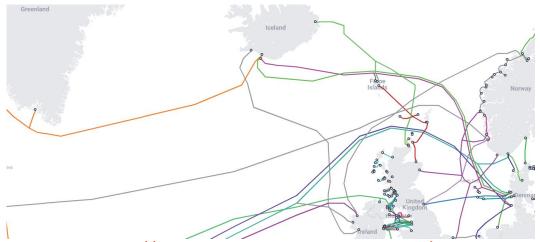
At the center of Internet: data centers

A physical infrastructure

Farms of servers

Each with multiple services

- Web pages
- Search engine
- Text of new articles
- Authentification
- Domain name service
- Picture database
- •



Internet: World-wide cooperation of DCs

A physical infrastructure

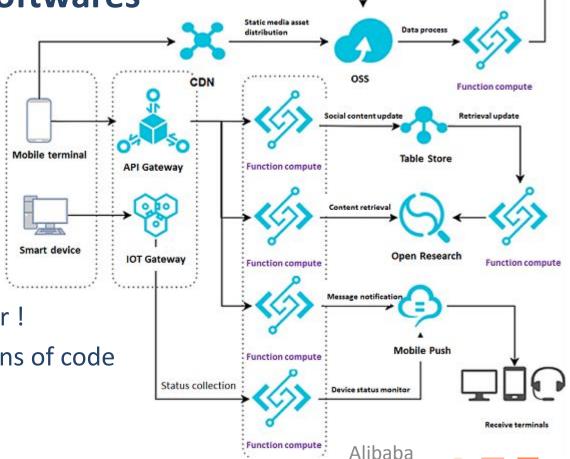
Spine of Internet:

- International network of fiber
- Geopolitical importance

Laura A. Schintler et al. 2005

https://www.submarinecablemap.com/

Complex softwares


A logic infrastructure

Softwares are split

- In tasks
 - Simplification
 - Delegation
- Duplicated
 - Speed, resilience

Dr. Frankenstein monster!

- Facebook : 50 millions of code lines
- TikTok : 15 millions

Process result push

Environmental impact of digital technology

Part 2 : Environmental impact

Small-quizz

Is my footprint mainly linked to

- Data centres and their electricity consumption?
- 2. The intermediate network (access provider, fibre optics, backbone)?
- 3. The equipment I own directly?

Does this footprint come from

- 1. My actual usage?
- 2. The manufacture of the equipment?
- 3. Other source(s)?

LCA: Life Cycle Assessment

Beyond energy alone

- Abiotic resources
 - kg equivalent antimony
- Climatic impact
 - kg equivalent CO₂
- Water depletion
 - I or m² of water
- Primary energy
 - Wh

Raw material extraction

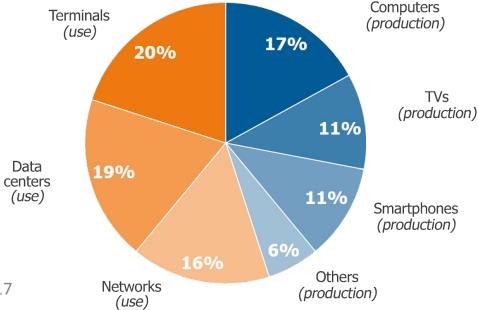
Manufacturing/ assembly

Utilization

Transportation/

Distribution from users to data centers

Datacenter:


- High efficiency
- No screen
- Always on
- High computing per Watt

	Users 34Mds	Networks 1.5Mds	Datacenter .07Mds
Energy	60	23	17
GHG	63	22	15
Water	83	9	7
Electricity	44	32	24
Resources	75	17	8

Zoom on Energy

Costly steps:

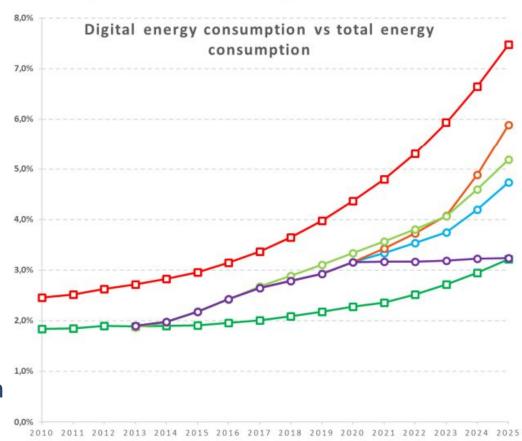
- Extraction and refining
 - 1 T coper = 100 T to extract
 Safe Drinking Water Foundation, 2017
- Component manufacturing
 - Silicon purification
 - 2MW per kg
 - 20l of water per cm²
 - 1% without any defect
 - Toxic substances, arsenic, antimony, phosphorus, hydrogen peroxide, nitric, sulphuric and hydrofluoric acids

Distribution of the energy consumption of digital technologies for production (45 %) and use (55 %) in 2017

[Source : Lean ICT, The Shift Project 2018]

Trends

Usage only


Different models:

- Calculation method
- Degree of change

Similar conclusions:

Explosion

Even sufficiency is not sufficient to reach a reduction

[TSP-2018] HIGHER GROWTH HIGHER EE

-O-[TSP-2018] SOBRIETY

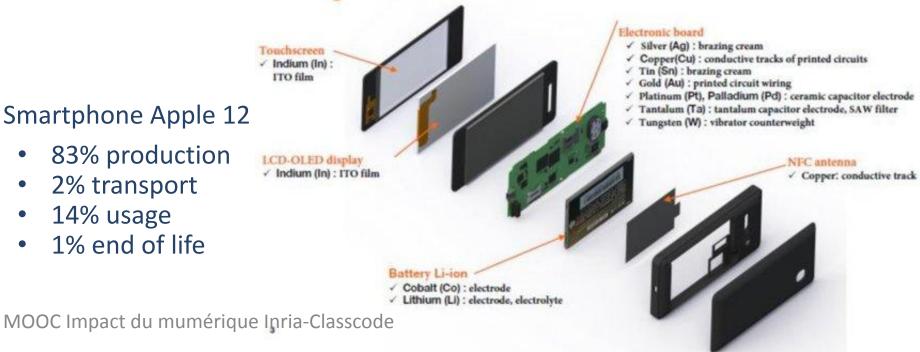
── [TSP-2018] SUPERIOR GROWTH PEAKED EE

-D-[Andrae&Edler-2015] WORST CASE

-O- [Andrae&Edler-2015] EXPECTED

-O- [TSP-2018] EXPECTED UPDATED

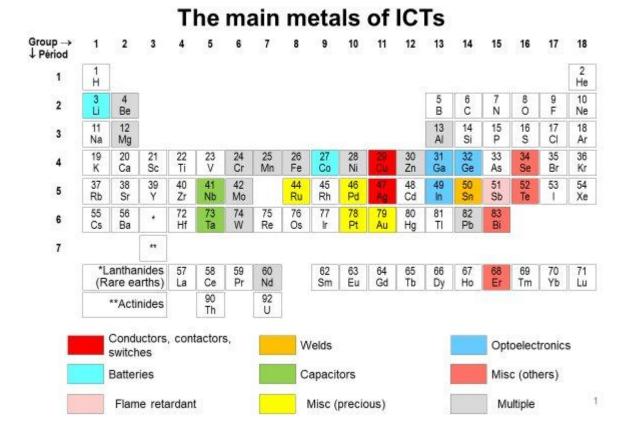
Figure 2: Evolution 2010-2025 of energy consumption of digital technology versus world energy consumption⁹. [Source: [Lean ICT Materials] Forecast Model. Produced by The Shift Project from data published by (Andrae & Edler, 2015)]



Example: A smartphone

Smartphone: architecture and rare metals

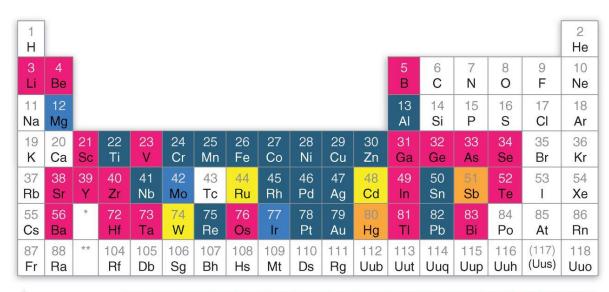
- 83% production
- 2% transport
- 14% usage
- 1% end of life



Use of rare materials

Geopolitical tensions
Limited resources
Tensions in usage

The main metals of ICTs. Bihouix P., 2015



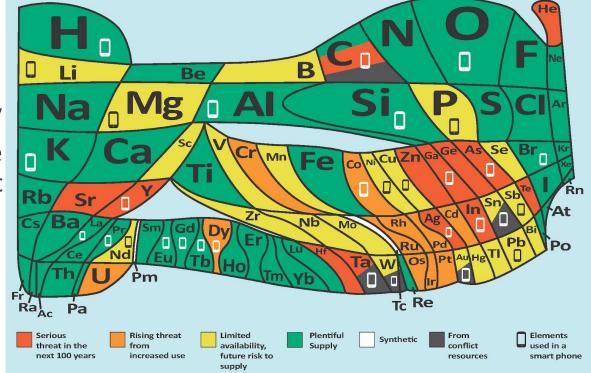
A difficult recycling

Profitable reserves depleted in 30 years (greenIT)

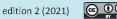
Challenges in Metal Recycling 2012

>10-25%

>50%


Size : Availability

- Atmosphere
- Earth's crust


<u>Link</u>

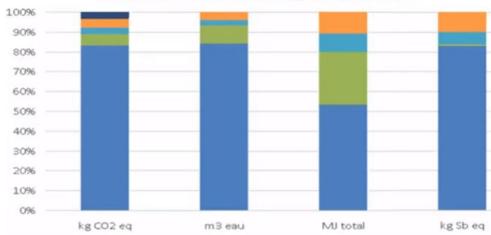
The 90 natural elements that make up everything

How much is there? Is that enough? Is it sustainable?

Read more and play the video game http://bit.ly/euchems-pt

Service LCA

Manufacture of the user terminal


Most cost are before

- Usage
- Even switching-on

Important to remember

- Reduce obsolescence
 - Of personal devices
 - Of Internet

MI

kg Sb eq

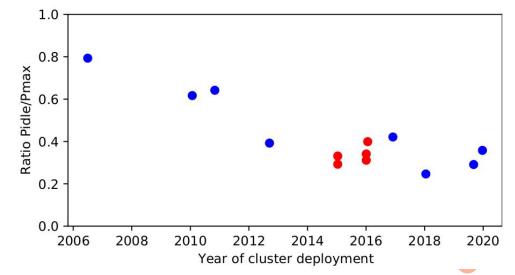
m3 eau

kg CO2 e q

Environmental impact of digital technology

Part 3: Take action

Improve the hardware


Even idle a computer consumes electricity

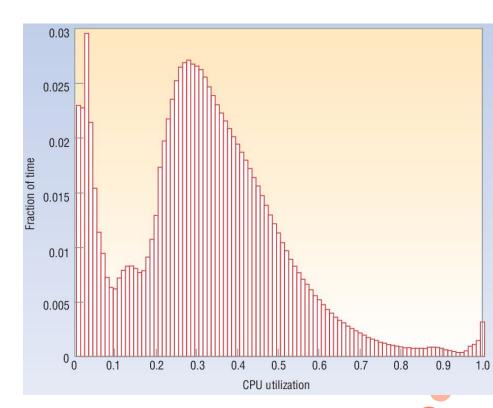
In 2000 a server was consuming 80% of its maximum just for being

switched on

Now 20 to 30%

Recycling issues, obsolescence

Koomey's Law: Performance per Joules: double every 2 years

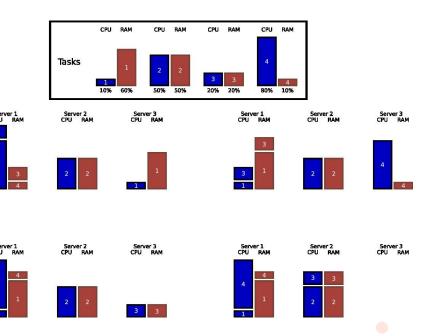


Improve the management

At the infrastructure level

Servers often underutilized A mean usage of

- 30% in data centers (now more toward 70%)
- Even less for personal computers



Improve the management: Consolidation

Virtualization techniques in data centers

Algorithms for

- Sharing the resources
- Move the applications where they impact less
- Switch off idle servers

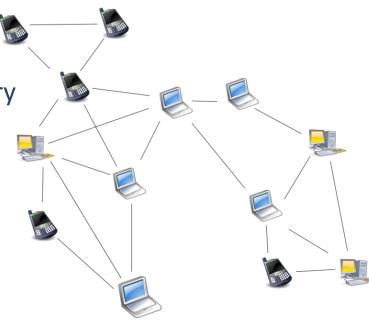
Energy-aware service allocation

Improve the softwares: Eco-design

- I understand the number of software features
 - Avoiding bloatware
 - Data volume and digital sobriety
- I understand what I am doing
 - Detailed analysis of initial requirements
 - Behaviour measurement
- I favour open source: reusing and contributing to the commons
- I plan software management
 - Increasing lifespan
 - Continuous improvement

Je code : les bonnes pratiques en éco-conception de service numérique à destination des développeurs de logiciels

Decentralising the internet


Web 3.0 but the real one

Direct communications without intermediary

- Less infrastructure
- More resilience
- Wifi-direct / Wi-Fi ad hoc

Blockchain

Yes but in 5 years

Improve usage

Moderation in consumption does not mean renunciation.

Only use useful features.

- HD video on your phone?
- Back up all your photos for eternity?

Use appropriate means.

- 5G on the train?
- Cloud-only services?
- Photo transfer: Cloud or phone to phone?

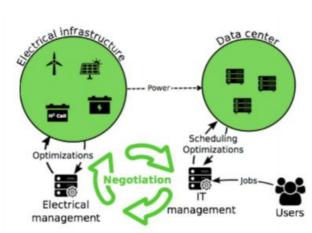
Word processing, Presentation, Spreadsheet

Local	0.2 → 0.5W
Online	1.7 → 7.8W
Offline with saves	.8 → 2.9W

Taking action

At the personal level

- Do not increase the rate of equipment ownership.
 - Mutualise (smartphone = Swiss Army knife) and sharing.
- Extend the lifespan.
 - Reuse, repair.
 - Second-hand.
 - Consider when purchasing.
- Turn off unused devices.
 - Internet box (7 to 10W, equivalent to an energy-efficient refrigerator).
- Moderate usage
 - 4G consumes 23 times more than WiFi (especially on aeroplanes)
- Collect waste
 - Reused, repaired, recycled and decontaminated

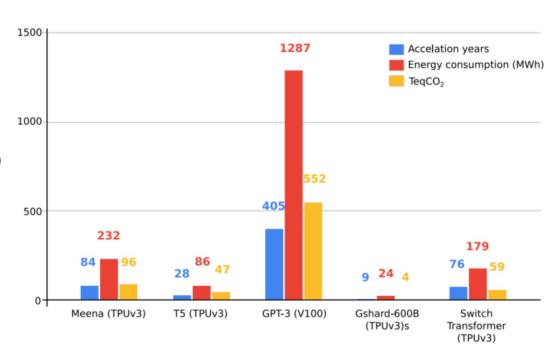

Scaling

At the institutional level (professional, academic, ...)

- Reduce equipment levels
 - One desktop or laptop computer is sufficient, as is one monitor
 - Reuse at end of life
- Manage travel
 - Carpooling, public transport, fleet of vehicles
- Aim for eco-design
 - Take it into account in your activity
 - Aim to reduce it as part of your activity
- Manage consumables.
 - Recycled paper, green electricity.
- Measure/evaluate.
 - LCA of an activity (not of software).

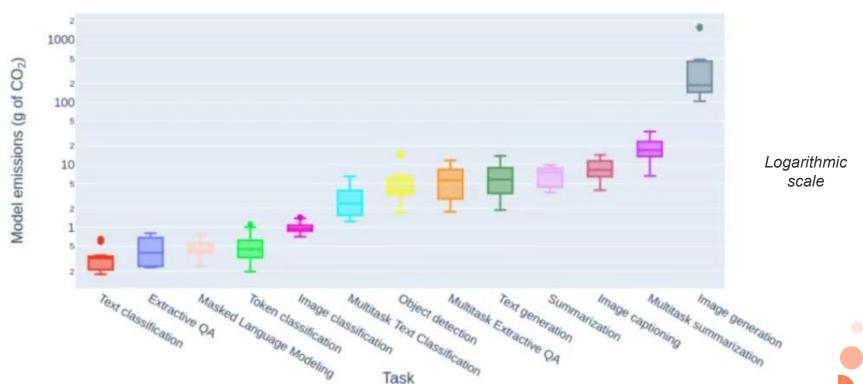
Some openings

A.I.


Artificial intelligence

Deep Learning

GPT-3


- Creation and synthesis of documents
- 1TeqCO₂ = 1 return trip
 Paris-New York
- 100k€ of electricity

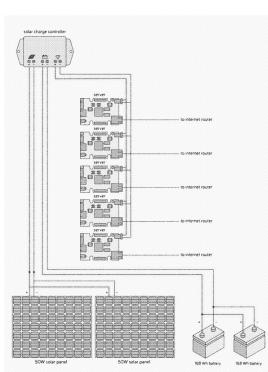
But "free" usage

More details on A.I. phases

Some openings

Low Tech Internet

Keep It Simple Stupid


Low tech magazine

Optimization

- Software
- Hardware

Simplification

- Capacity
- Expectation

LOW ← TECH MAGAZINE

Ce site fonctionne à l'énergie solaire, et se retrouve parfois hors-ligne \divideontimes MENU

Le site imprimé : premier volume en français

Lisez Low-tech Magazine sans avoir besoin d'un ordinateur, d'internet ou d'une alimentation électrique – ou quand le site internet solaire est hors service à cause d'une mauvaise météo.

Aarch 2022

Les Matelas-Fascines : la Vannerie se Déchaîne

Comment fabriquer un panneau solaire low-tech

https://solar.lowtechmagazine.com/

Keep It Simple Stupid

Live sports results

Purely software optimization

- 23 matches
- 300kB transferred from one server
 - <u>Estimation</u> for a mail: 75kB on average
- 3 round-trips
- Simple to display (eq. 0g CO₂)

https://plaintextsports.com/

Page loaded: 9:03:47 PM (~5 seconds ago)
Data loaded: 9:03:36 PM (~20 seconds ago)

plaintextsports.com

Dark Mode

Taincexcsporcs.com

Apr. 4 >

< Apr. 2 Sunday, April 3

acci seasons spaces

Leagues: NBA NHL MLS NWSL

College: NCAA WB NCAA MB

NCAA Women's Basketball Tournament

Game links open ncaa.com in a new tab

Fri	Final	Fri	Final
1 S CAR	72	1 STAN	58
1 LOUIS	59	2 UCONN	63

| Sun 2:00 AM GMT+2 | 1 S CAR 34-2 | 2 UCONN 30-5

See all NCAA Women's Basketball games

National Basketball Association

Teams Standings

93	I MAC	
	WAS	91
91	BOS	126
+	+	
+	+	
	1815 B	+ +

Some openings

Rebound effect

Rebound effect (Jevons paradox)

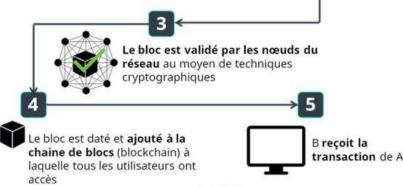
improved coal efficiency → increased consumption

Type of effect	Level of influence	ICT as a solution	ICT as a problem
1st order (direct)	ICT itself	Producing more with less	ICT life cycle: Production, Use, End of life
2nd order (indirect)	ICT applications in other sectors	Optimisation effects, substitution effects	Induced effects
3rd order (systemic)	Social change	Profound structural change towards a dematerialised economy	Rebound effects, new critical information infrastructures

What rebound effects have you experienced in your use?

Some openings

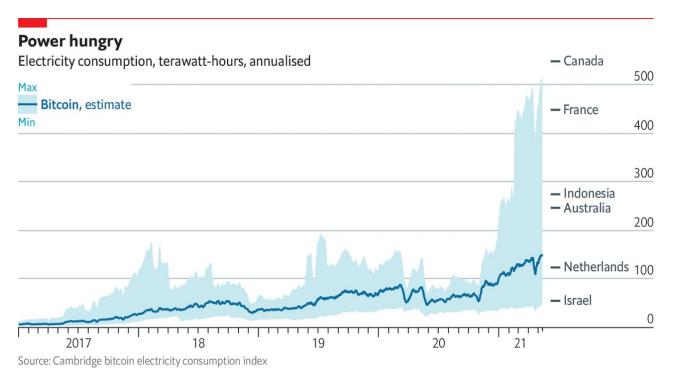
Bitcoin, blockchain, NFT


Bitcoin / NFT

A effectue une transaction envers B

BlockChain principle

- Information storage/transactions
- Replaces the trusted third party
- All participants
 - Record all transactions
 - Verify all transactions
 - Often, 'verifying' provides a benefit
- Bitcoin:
 - Transactions: transfer internal value (divisible)
- NFT:
 - Transaction: transfer an internet address



© Blockchain France 2016

Bitcoin / NFT

Bitcoin: 1,000,000 bitcoin miners

Intrinsic value
Creating uniqueness
Value of a

- BitCoin
- NFT

The Economist

Bitcoin / NFT

Adding value to what can be copied for free

Affluent society, zero marginal cost

Culture: Ian M. Banks

Virtually infinite resources and colonialism

The Diamond Age: Neal Stephenson

Hierarchical (noble) control of resources

Star Trek

Replicator and altruistic vision and colonialism

In the real world: Promise of fusion

Some openings

Video Games

The rise of mobile

A new category, new usages

Overall market stability

PC, Console

Strong growth in the mobile market

x2 in 5 years

SELL 2021

ÉVOLUTION DU CHIFFRE D'AFFAIRES PAR ÉCOSYSTÈME****

Cloud gaming

Everything is done in a data centre; only the display and interaction are local.

Complex subject matter

Positive

- Servers 100% utilised
- Modular vision

Negative

- Hidden costs
- Additional network cos
- Rebound effect

2020: 36 million players

2022: £3.2 billion market

Augmented reality / Virtual reality

Still as complex as ever

Positive

Fewer materials than a large television

Negative

Double the processing (resolution, latency)

Thanks

POUR UNE INFORMATIQUE ÉCO-RESPONSABLE Super thanks to Denis Trystram