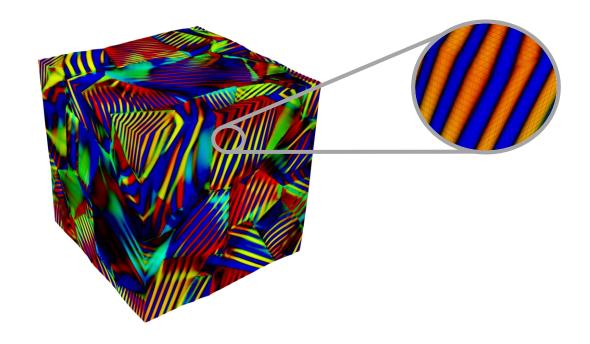


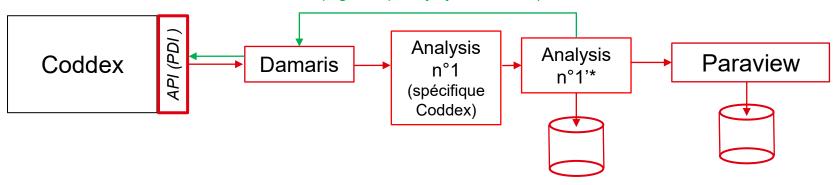
Liberté Égalité Fraternité

Restitution Brainstorming Coddex, Dyablo

LXCERSION DIE SILUI DUROCHER



Coddex



WP1:

- Develop an I/O analysis component (I/O orchestrator) to ensure data consistency and manage the in-memory data pipelining problem
 - Anyway, the in-situ infrastructure has to be in place first
 - Unsure about who is going to do this
 - o It may be related to the work with Gysela? We need to think more about this

Automatic « Freeze » **and** « Release » not enough time to write to disk (e.g., temporary system freeze)

*analysis specific to IO management

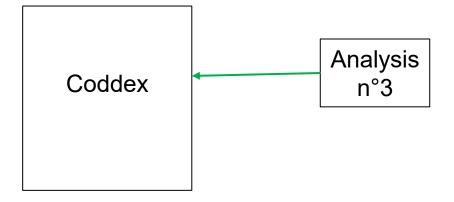
November 6 2025

3

WP2:

• When exploring results interactively in order to find the parameters for a method to be used in in situ analysis, is it possible to "freeze" the sending of data to this analysis?

« Freeze » sending data but Coddex (and other analytics) continue to run or « Release » : resend data with new parameters **Analysis Damaris Paraview** n°3 only Xray data preparation PI (PDI X Diffraction Coddex Analysis Damaris n°1' External Analytic code X Diffraction



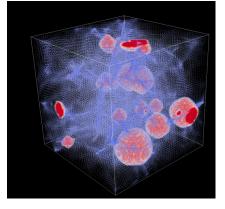
WP2:

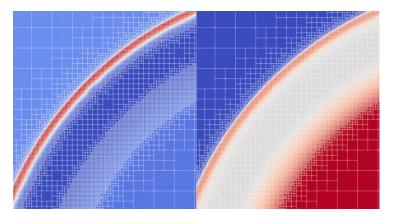
• From the Coddex code perspective, a priority for WP2 would be to develop the in situ scenario that allows an analysis to send feedback to the code.

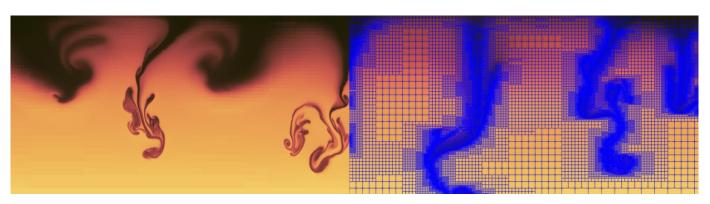
WP3:

How Al can "help" Coddex analyses:

- Event Detection :
 - Detecting phase transitions in a material, such as the α γ transition in cerium
- Anomaly detection
 - Help to find "non-physical" situation and trigger a specific response from Coddex
- Simulation-based inference (P1):
 - Propose an initial relevant setting for the algorithm simulating X-ray diffraction
 - Learning from smaller scale simulations and generalize on larger ones


29/10/2025



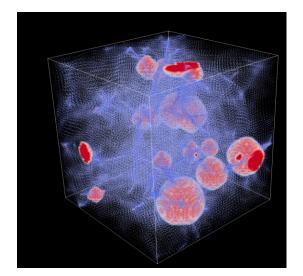


Develop new AMR data formats

Post-Doc financed by Exa-DoST

Currently in Dyablo

- Post-processing outputs use *Paraview Unstructured Mesh + HDF5*
- → Heavy geometry / connectivity (more disc space than actual data)
- → Slow post-processing
- → Large data loaded all at once through paraview


But makes nice images for small simulations

Wishlist for a new format dedicated to AMR

- Efficient storage of AMR grid (implicit geometry)
- Allow efficient and fast post-processing with AMR
 - → Leverage hierarchical structure (Level of detail, ...)
 - → AMR-optimized algorithms (Slices, subdomains, Post-Doc: Sylvain JOUBE
- Works for distributed simulations
 - → Independent of simulation MPI parallelism
- Standardization: integrate with existing tools

- 18 month: nov. $2025 \rightarrow 2027$
- AMR data format
- Associated post-processing tools (?)

→ Load partial data (less RAM than full simulation) • Implementations : Dyablo (CEA), Samurai (Polytechnique)

Cosmology: 4 Mpc box with dark matter particles and ionization, image generated by paraview

General:

- Collaborate through the post-doc (Financed through WP1)
 - Co-design the data format with IO libraries / experts
 - Standardization/data format is specific to AMR: we probably have to do it on out own
 - Help him implement actual disk writes (maybe PDI)
- We are open to provide a mini-app / benchmark with dyablo
 - We can generate a lot of data (bench upt to 2000 GPUs on AdAstra)

In-situ / AI:

Dyablo is still young and post processing / Al analysis are not ready yet

- Use-cases (post-processings, ...) will come later from physicists / dyablo applications
- We want to make sure everything we make for IO is ready for in-situ / AI

=> Pave the way to in-situ, AI, ... by using Exa-Dost software

November 6 2025