

ExaDoST - Work Package 1 Exascale I/O and Data Storage

WP Leaders:

Francieli Boito (Université de Bordeaux) & François Tessier (Inria Rennes)

- → (New) workloads (AI, data analytics), using more data and using it in new ways.
- → More data from **sensors** and **scientific instruments**.

2022: 2 PB dataset processed

2023: 80 PB generated by a single job

2023: **700 PB** storage system on **Frontier** has only a **90 days retention policy**

SDP:

Input: 10 Tbps

Output: **700 PB / year**

2023: **10s PB** managed per simu 2023: **13.2 TB** of data distributed **simultaneously** into **24'576 files** per checkpoint

- → (New) workloads (AI, data analytics), using more data and using it in new ways.
- → More data from **sensors** and **scientific instruments**.

2023: **40 TiB / day**"Shortly": **180 TiB / day**"Near future": **700 TiB / day**

2021: **240 Gb/s** storage bw 2023: **> 1 EiB** of storage 2027: **2.4 Tb/s** storage bw ~**350 PB** / year (raw data)

2022: 2 PB dataset processe

2023: **80 PB** generated by a **single job**

2023: **700 PB** storage system on **Frontier** has only a **90 days retention policy**

SDP:

Input: 10 Tbps

Output: 700 PB / year

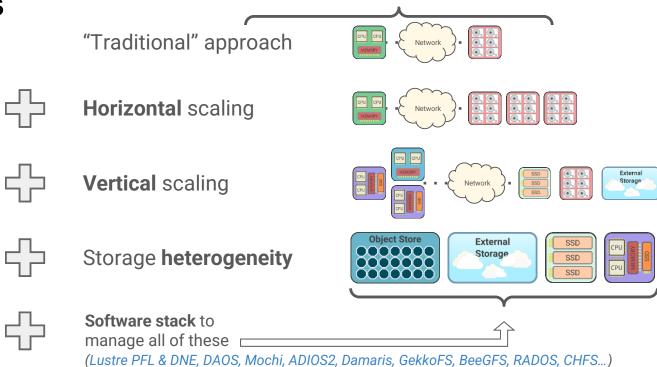
2023: **10s PB** managed per simu 2023: **13.2 TB** of data distributed **simultaneously** into **24'576 files**

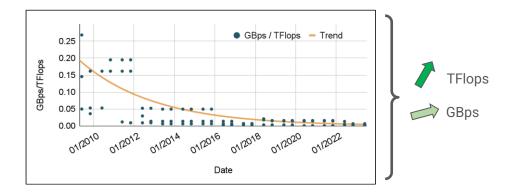
per checkpoint

NumPEx demonstrators

Compute-centric to data-centric shift

I/O pressure on large-scale storage systems





- → What about performance then?
- → Extracted from the **Top500** over the past 15 years:

WP Objectives

To optimize the I/O performance of applications and workflows, and leverage emerging storage technologies

- Support the I/O and storage requirements of complex simulation/analytics/AI workflows running on hybrid
 HPC (+cloud, +edge) systems
- Promote efficient I/O resource usage
- Make the I/O infrastructure adaptable to applications' characteristics
- Scale up modern I/O and data storage methods and tools
- Develop and integrate **new output formats** for checkpoint/restart and for scientific analysis

Participants

Partner	Type of position	Name of participant
Inria Bordeaux	Researchers	Francieli Boito, Luan Teylo, Emmanuel Jeannot, Brice Goglin, Mihail Popov
	Engineers	Mahamat Abdraman
	PhD student	Alexis Bandet (former), Serge Meurrens (from Dec 2025)
	Postdocs	Maxime Gonthier (from Apr 2026), 1 open position
	Interns	Alexandre Laffargue (2024), Axel Malmgren (2024-2025), Mahamat Abdraman (2024), Iheb Becher (2024), Laora Aimi (2025), 1 open position
Inria Rennes	Researchers	François Tessier, Gabriel Antoniu, Guillaume Pallez, Silvina Caino-Lores, Jakob Luettgau
	Engineers	Julien Monniot (Jan - May 2025)
	PhD student	Théo Jolivel (+ CEA)
	Interns	Ugo Thay, Remy Chiv, 1 open position
CEA - Maison de la simulation	Researchers/engineers	Julien Bigot, Yushan Wang, 1 open position
CEA DAM	Researchers	Philippe Deniel, Thomas Leibovici, Arnaud Durocher, Maxime Delorme
DDN	Researchers	Jean-Thomas Acquaviva
	PhD student	Méline Trochon (+ Inria Bordeaux, + Inria Rennes)

Summary

Datasets

- O I/O performance data @ Zenodo
- O 1 I/O traces repository

Scientific Dissemination

- O 4 conference papers: IPDPS'26 (under review), IPDPS'25, IPDPS'24, Euro-Par'24, HiPC'24
- O 4 workshop papers: PDSW'24, ESSA'25 (2 papers)
- O 1 pre-print @ HAL
- O 3 internship reports
- O Multiple talks: NHR'25, ESSA'25, COMPAS'24, JLESC, Per3S, ...

Project's deliverables

O 2 reports submitted

External Collaborations

- D ECLAT Joint-Laboratory
- O MeerKAT, South Africa
- O University of Honolulu, HI, USA
- O University of Darmstadt, Germany
- O LNCC, Brazil

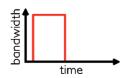
Software production

- FIVES
- O IOPS
- O Interference Simulator
- O MOSAIC
- о тото

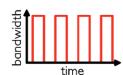
Poster

Focus

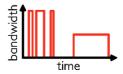
Focus 1: MOSAIC


MOSAIC: I/O Pattern Categorizer

Automatic Categorization of I/O Patterns Based on 3 Pillars:


Temporality

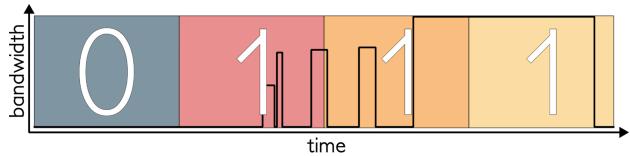
When are I/O performed during the execution of an application?


Periodicity

Are I/O operations repeated over time? Are some files frequently accessed?

Metadata Load

What is the **impact** of the execution of an application on the **metadata servers**?



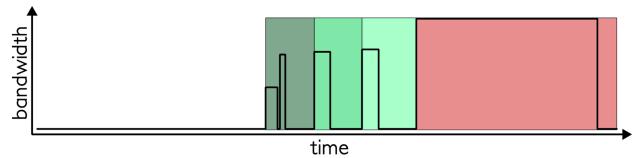
MOSAIC: Example of a Categorization

example of the I/O write activity of an hypothetical application

Assigned Classes

write 0111

no write **activity** during the **first quarter**



MOSAIC: Example of a Categorization

example of the I/O write activity of an hypothetical application

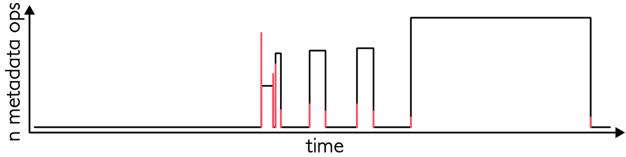
Assigned Classes

write_0111 write_periodic

no write activity during the first quarter some operations are repeated over time

metadata_high_spikes

executions leads to multiple metadata request spikes



MOSAIC: Example of a Categorization

example of the I/O write activity of an hypothetical application

Assigned Classes

write_0111 write_periodic metadata_high_spikes no write activity during the first quarter

some operations are repeated over time

executions leads to multiple metadata request spikes

MOSAIC: Pattern-Driven I/O Optimizations

Unsupervised Clustering of Patterns

→ find patterns frequently assigned together

Study of Dataset Biases

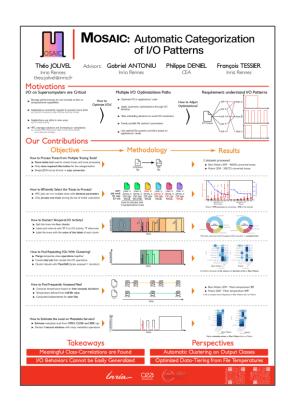
→ analyze the variations of I/O patterns from one machine to another

Scheduling Optimizations

explore the use of I/O patterns to guide scheduling decisions

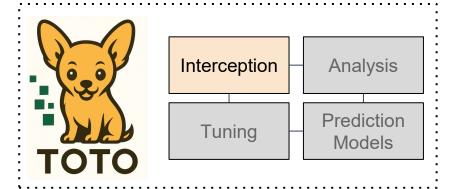
Automatic File Storage Tiering

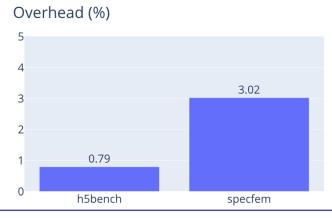
→ store files on different storage tiers according to their access frequencies (periodicity & file temperature)



MOSAIC: Come See our Poster!

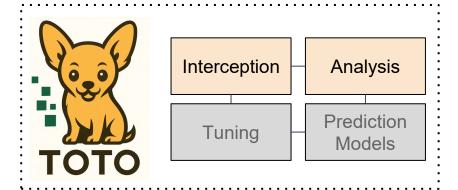
Focus 2: TOTO



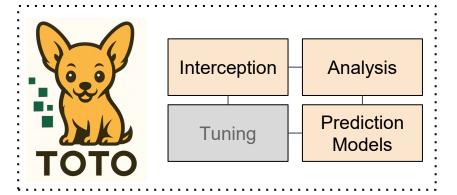


TOTO intercepts POSIX I/O calls from each MPI rank

with LD_PRELOAD, no modification (or recompilation) required!

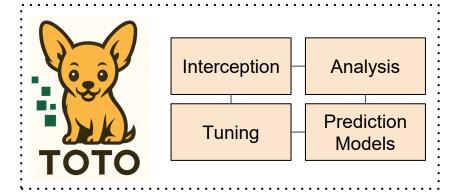


- TOTO intercepts POSIX I/O calls from each MPI rank
- Periodically, all ranks share information and characterize the current access pattern

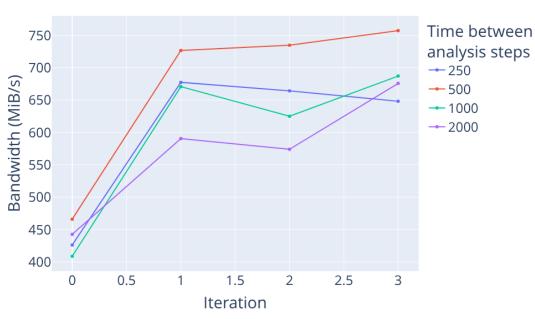


- TOTO intercepts POSIX I/O calls from each MPI rank
- Periodically, all ranks share information and characterize the current access pattern
- Prediction models can be used to support decisions
 - e.g. to choose stripe count

We were able to train a model with only 10% of the previously-required data



- TOTO intercepts POSIX I/O calls from each MPI rank
- Periodically, all ranks share information and characterize the current access pattern
- Prediction models can be used to support decisions
 - e.g. to choose stripe count
- The master sends instructions on parameters to use
 - For now, it changes stripe count and avoids straggler OSTs



Pattern A

Developers: Francieli Boito & Luan Teylo (Paper and git repository to appear soon)

3. Next Steps

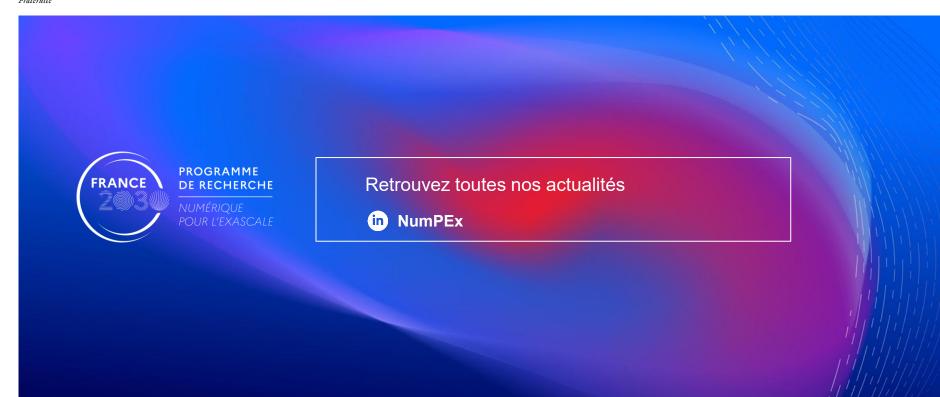
5 November 2025

28

Next steps

- Continue the characterization of I/O behavior in HPC systems
 - Expand to more recent systems
 - Study the biases of I/O datasets
- Leverage the knowledge of I/O patterns
 - Develop more accurate I/O models in FIVES based on MOSAIC characterization
 - Make informed scheduling decisions thesis starting soon (TADaaM + KerData)
- Work on the illustrators
 - Mitigate I/O interference for Gysela Méline Trochon's thesis
 - o Progress on profiling the DDF pipeline (SKA) create a mockup for I/O benchmarking
 - A big goal for this meeting!

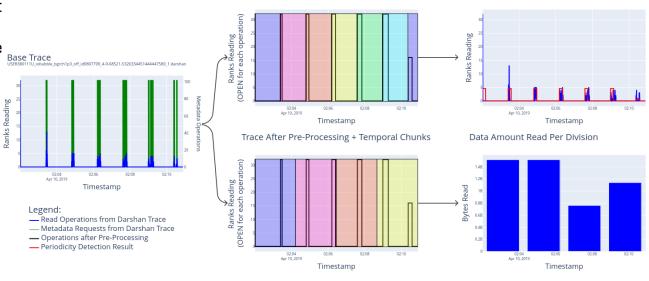
5 November 2025 29



Liberté Égalité Fraternité

Periodicity Detection Result

Focus 2: Detection and Categorization of I/O Patterns in HPC Applications

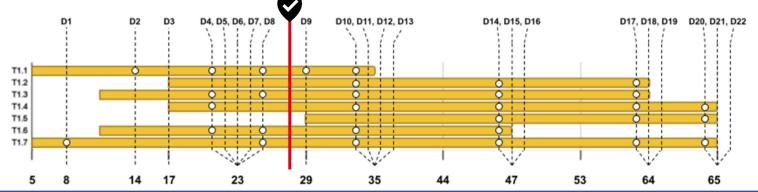

MOSAIC

Segmentation-based method traces

Analysis of one year of trace

internship (Oct. 2024)

Trace After Pre-Processing + Segmentation



Deliverables

- [MdlS, R] (M0+08) **WP1,2,3,4**: Selection of the initial release of the libraries and tools that will make up the Exa-DoST software stack.
- [TADAAM, R] (M0+23) WP1: Report on the solutions selected in Exa-DoST to answer the storage and IO challenges at Exascale
- [KerData, C] (M0+23) WP1,2,3: Intermediate coordinated release of all tools and libraries produced by Exa-DoST, including documentation
- [MdlS, C] (M0+35) WP1,2,3: Intermediate coordinated release of all tools and libraries produced by Exa-DoST, including documentation
- [SANL, C] (M0+47) WP1,2,3: Intermediate coordinated release of all tools and libraries produced by Exa-DoST, including documentation
- [DataMove, C] (M0+59) WP1,2,3: Final releases of all tools and libraries produced by Exa-DoST, including documentation
- [DataMove, R] (M0+65) WP1,2,3: Report on the final design of the tools and libraries produced by Exa-DoST and design solved

5 November 2025 32