

Fraternité

Exa-DoST: Exascale Data-oriented Software and Tools

PEPR NumPEx project ANR-23-PECL-0007 1 Jan 2023 – 31 Oct. 2029 (82 months) PI: Gabriel Antoniu (Inria), Co-PI: Julien Bigot (CEA)

The Exa-DoST "core" team

CEA/DAM - DPTA, SISR, SANL
CEA/DRF - MdlS, IRFM, IRFU
CNRS/INSU, Observatoire de Paris, Observatoire de la Côte d'Azur
Inria - DataMove, KerData, MIND, TADaaM, +SODA, +STATIF, +THOTH
DDN

The NumPEx Program

Co-directors: Dr J. Bobin (CEA), Pr M. Krajecki (CNRS), Dr J-Y. Berthou (INRIA)

Project leaders and co-leaders:

Exa-Ma - C. Prudhomme, U. de Strasbourg- Hélène Barucq, Inria

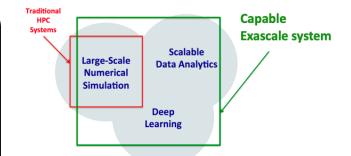
Exa-Soft - R. Namyst, Inria/U. de Bordeaux - Alfredo Buttari, IRIT

Exa-Dost - G. Antoniu, INRIA - Julien Bigot, CEA

Exa-AtoW - F. Bodin, U. de Rennes - Mark Asch, U. Picardie - Thierry Deutsch, CEA

Exa-DI - J-P. Vilotte, DR CNRS - Valérie Brenner, CEA

The French NumPEx Program Context and motivations


A technological
breaktrough
Hybrid scalar/acc.
fewer memory/node
more concurrency
Mixed precision, ...

The Square
Kilometer Array
(SKA) & he
Mind Blowing
Big Data It W
Produce

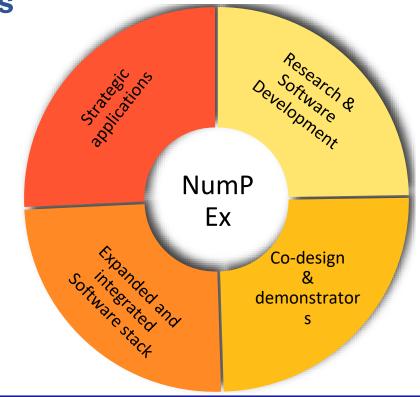
In the digital continuum

Increased flux/volume from the edge to the HPC system

Convergence HPC/HPDA/IA

The French NumPEx Program
Objectives

<u>cea</u>



Contribute and accelerate the emergence of a European sovereign exascale software stack and strategic applications exascale capability in a coherent and multi-annual framework

Integrate and validate **co-designed** methods, logic collection of libraries, frameworks and software stack with demonstrators of strategic applications.

Accelerate science-driven and engineering-driven developers training and software productivity

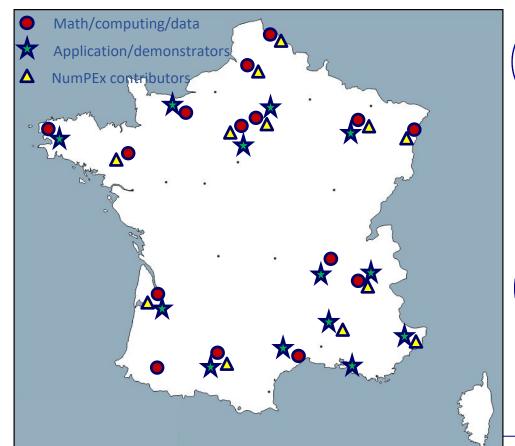
Foster national and international collaborations to prepare for the post-Exascale era

Help aggregate the French HPC/HPDA/IA community

The French NumPEx Program

European Pre-Exascale system

Co-develop the exascale software stack Preparing the applications for the Exascale era



NumPEx by numbers

2023-2028

* Funding 41M€=500 person.year non permanent staff

6 Years 41 M€* + 170 person.year permanent staff

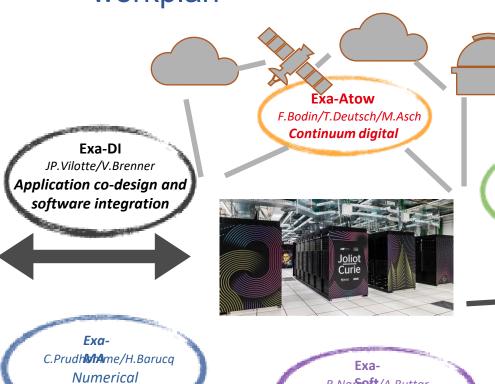
Total cost : 81 M€

Core Research Institutions Core national Research Institutions: CNRS, CEA, INRIA, Universities, Engineer schools, Industry

3 Focus Area Software stack development (PC 1-3) Wide-area workflows and architecture (PC 4) Integration and application development (PC 5)

> 80 R&D teams 500 Researchers

The French NumPEx Program workplan



Applications

Exa-G.Antonst/J.Bigot Data

methods and solver

R.Nar Soft/A.Buttar **Computing**

The French NumPEx Tranversal groups

Accelerated architectures and programming models

S.Thibault/M.Pérache

ΑI

T.Moreau/E.Franck/J.Bobin

Computing centers

F.Bodin/N.Lardjanne

Energy management and optimization

A.Guermouche/G Da Costa

Gender/Equity/Diversit

A-L Pelé/V. Grandgirard

Training

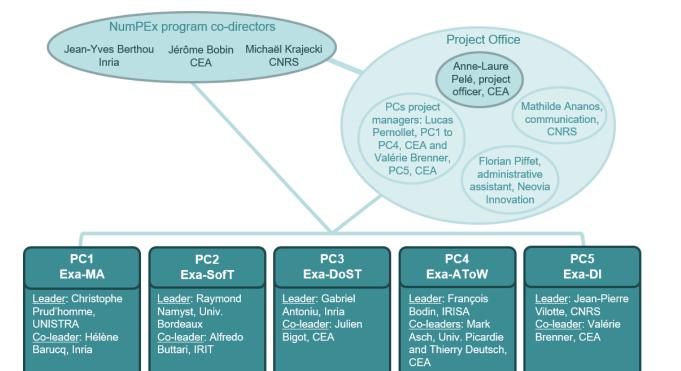
M.Krajecki

Software production and integration

B.Raffin

International collaborations

J-Y Berthou



Organisation

YoungPEx

Create a network of young recruits in NumPEx (internships, theses, postdocs on fixed-term contracts, and permanent young employees).

Develop a cross-disciplinary community through PCs, thereby enriching exchanges and even fostering collaborations.

Propose original initiatives to the NumPEx management, such as:

- Actions during General Assemblies (AGs)
- Seminars
- Actions for the integration of young recruits into NumPEx
- Communication, training, careers
- ...

Don't miss the YoungPEx workshop!

The International Post-Exascale (InPEx) Project

InPEx expected outcomes

- •Identify future trends/disruptions, missing software components
- •Contribute to the share/development of software components: @deployable,
- @maintenable, @robust, @sustainable => partnership factory
- •Landmark documents largely exploited, worldwide, for supporting future postexascale science

Develop an international network of exascale computing experts and leaders

Actions:

- Dedicated international working groups
- International Post-Exascale (InPEx) workshop series

Participants:

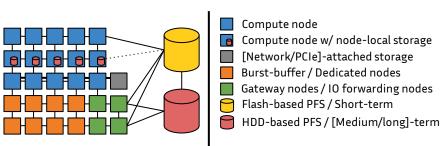
Researchers, engineers, industry, funding bodies

The International Post-Exascale (InPEx) Project Inpex.science

Date	(10/2023)	11/2023	06/2024	04/2025
Location	Preparatory phase EU (France)	SC'23 - BOF	Workshop1 EU/BSC	Workshop2 Japan
Date	03/2026	09/2026	06/2027	09/2027
Location	Workshop3 US	Workshop4 EU	Workshop5 Japan	Workshop6 US

Latest InPEx meeting, Kanagawa /Japan, 14-17 April 2025 Four parallel sessions:

- Al and HPC
 - Sharing Al-centric benchmarks of hybrid workflows
 - Generative AI for Science
- Software production and management
- Digital Continuum and Data management

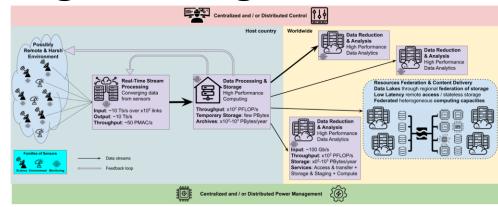


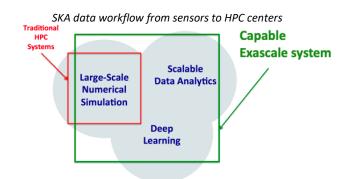
Data at Exascale: Challenge at Hardware Level

- Increasing gap between compute and I/O performance on large-scale systems
 - Ratio of I/O to computing power divided by ~10 over the last 10 years on the top 3 supercomputers
- ... and data deluge!
 - At NERSC, data volume x41 in 10 years
- New storage tiers and advanced architectures to try to mitigate this increasing bottleneck
 - More complex on-node memory layout
 - Emerging complex applications and workflows have to adapt

Ratio of I/O bandwidth (GBps) / TFlops of the top 3 of the Top500

Trend in storage technologies available on extreme-scale systems





Data at Exascale: Challenge at Usage level

- HPC centers do not live in isolation anymore
 - Edge Cloud HPC continuum
- Emerging workloads are hybrid
 - High-performance simulation
 - High-performance data analytics
 - Machine learning and artificial intelligence
- Interaction with data from the outside world sensors
 - Large scientific instruments

Exa-DoST: Expected Outcomes

Approach:

- Research on data-oriented tools for HPC
- Transverse, re-usable tools
- Usable in production at exascale

Fill the gaps in the existing software stack designed by previous projects (e.g. ECP)

Take into account French & European specificities

Ensure French & European needs are taken into account in roadmaps

⇒ ExaDoST will produce:

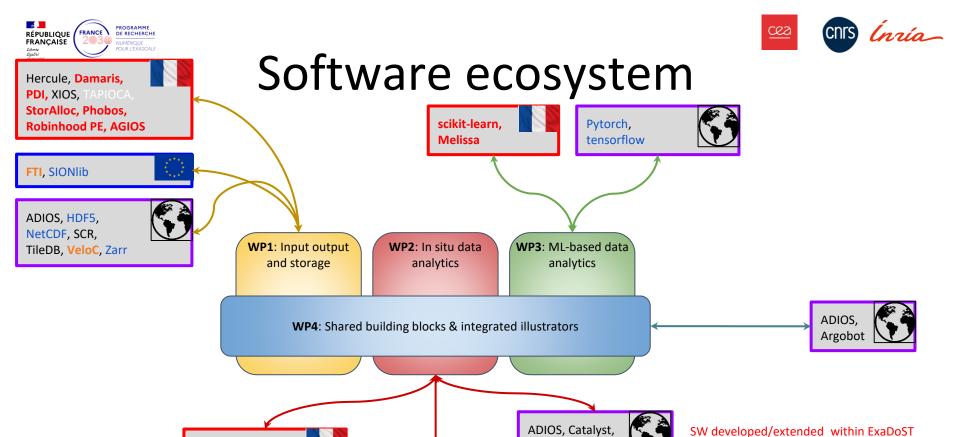
- New approaches to handle the data challenge at exascale
- Transverse libraries & tools that implement these approaches

Validated in illustrators at full scale

Fully application agnostic

Fully opensource

Work Packages in Exa-DoST


WP1: Exascale I/O and storage

WP2: Exascale In-situ data processing

WP3: Exascale ML-based data analytics

WP4: Shared building blocks & integrated illustrators

WP5: Management, dissemination and training

PEPR NumPEx - Exa-DoST project - General Assembly Meeting - Bordeaux, 5-7 November 2025

PyCOMPSs

Damaris, Deisa,

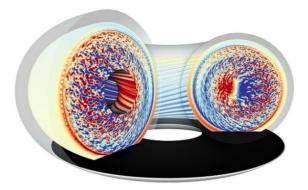
Oasis, PDI, XIOS

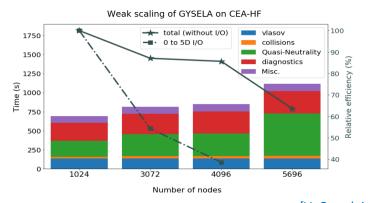
Conduit, Dask,

Sensei, VTK-m

Wilkins/LowFive, Ray,

SW potentially extended within ExaDoST/PC5


SW used within ExaDoST


Illustrator 1: GYSELA towards exascale

Main challenge: optimized management of huge amount of data with in-Situ Al-based diagnostics

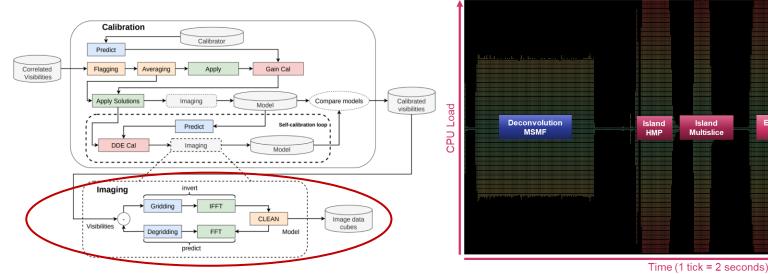
- GYSELA a non-linear 5D gyrokinetic code developed for 25 years at CEA/IRFM to simulate plasma turbulence in tokamaks.
- Optimized up to 730k CPU -> Intensive use of petascale resources (~150 millions of CPU h / year)

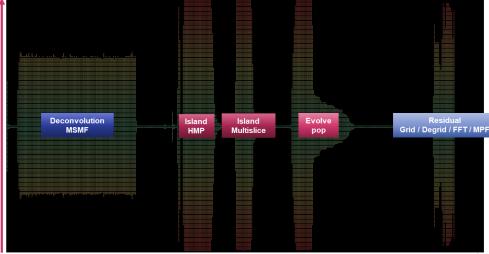
Relative efficiency of 85% on more than 500k cores

Typical simulation:

- 100 billion points (5D mesh: 3D space + 2D velocity)
- ~7 million of CPU hours (3.5 days / 65k cores)

- [V. Grandgirard et al., PASC 2022]
- I/O scalability is an issue: ~50% for 3072 nodes and ~38% for 4096 nodes. Crash on 5696 nodes
- Need to be solved for exascale ITER-like simulations





Illustrator 2: Square Kilometer Array (SKA)

Based on SotA software used to process large surveys (DDFacet)

- Complex iterative pipeline: optimize I/O footprint and upscale
- Ongoing work: definition of benchmarks and motifs identification

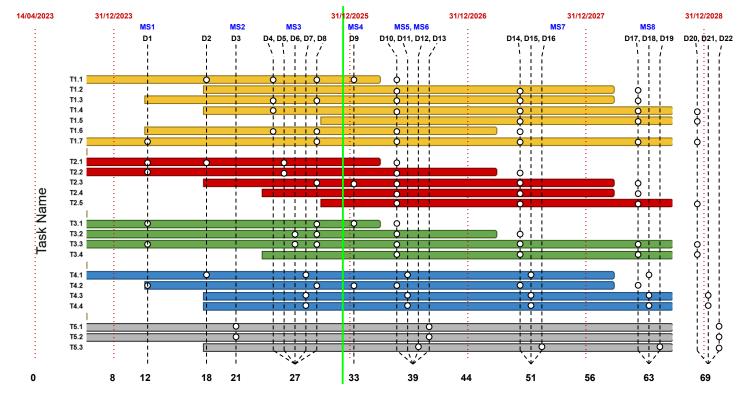
Illustrators overview

Integrated cross-WP illustrators

- Gysela (CEA/DRF/IRFM)
- SKA (CNRS + ...)

Motif-specific motivators

- Coddex (CEA/DAM)
- CROCO (CNRS + Inria +
- Dyablo (CEA/IRFU)



Updated Gantt Chart

Hiring: Status

WP	PhD students	Engineers	Post-doc	Total
WP1	1	2	0	3
WP2	1	4	0	5
WP3	1	1	1	3
WP4	0	2	0	2
WP5	0	0	0	0
Total	3 (6 prévus)	9 (12 prévus)	1 (2 prévus)	13 (19 prévus)

Collaborations with Other Projects

Within NumPEx

- Exa-AtoW: collaboration within the ECLAT joint lab on SKA (WP1, WP4), InPEx (WP1-WP5)
- Exa-DI: deployment of tools (particularly from WP2) for SKA, GYSELA), joint meetings
- Exa-MA: joint ANR project with the team of Emmanuel Franck on turbulence models (WP4)

With other PEPR programs (France 2030)

- PEPR TRACCS: HPC/IA coupling (WP3)
- PEPR Cloud: scalable storage (WP1), SKA demonstrator (WP1, WP4)

At European level

EoCoE-III Gysela-X++ exascale demonstrator (https://www.eocoe.eu/)

