

Fine-grain energy consumption modeling of HPC task-based programs

AG Numpex 2025

Jules RISSE, François TRAHAY, Amina GUERMOUÇHE 24/09/2025

INRIA, Institut Polytechnique de Paris

Introduction

Why should we care about energy?

El Capitan, the fastest supercomputer in the world (top500):

- 30 MW,
- power consumption of 55,000 French households

Electricity cost estimation:

 $1M/MW_{peak}/year$

Annual electricty bill: around \$30M

Figure 1: El Capitan cluster (11,136 nodes based on AMD MI300A APUs)

How to use HPC clusters?

Supercomputer nodes are accelerated and heterogeneous (CPUs, GPUs, APUs, diverse memory tiers, interconnects).

Classic approach: GPU offloading.

Challenges: coordination, data movement, idle host CPU.

Possible solution: express computations as task graphs, let a runtime schedule tasks across resources.

task-based runtime systems

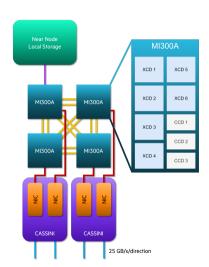


Figure 2: El Capitan node diagram

The StarPU runtime system

Task programming library for heterogeneous architectures.

- Developers express their application as a directed acyclic graph (DAG) of tasks and data dependencies.
- Tasks can have multiple implementations (CPU, CUDA/HIP).
- StarPU handles optimized scheduling, task dependencies, data transfers and replication.

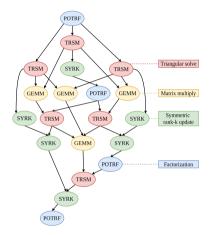
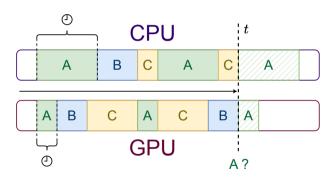


Figure 3: DAG of a 5x5 matrix Cholesky decomposition

Scheduling in StarPU

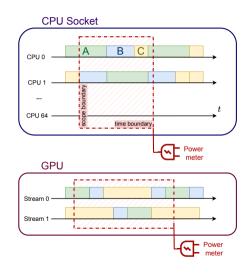
In StarPU, schedulers can use a history based task performance model.

- Task duration is measured at runtime on all devices.
- StarPU schedulers can use timing values for decisions.
- Users can define their own scheduling policies.



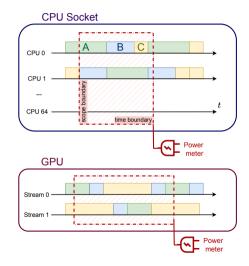
Problem: StarPU does not consider the energy consumption of tasks.

Not directly possible because of granularity issues:



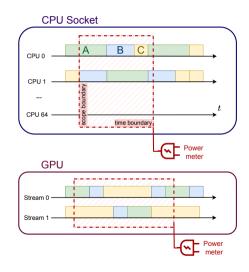
Not directly possible because of granularity issues:

- Time granularity
 - $\circ~$ Power meter granularity: $1 \rightarrow 100\,\mathrm{ms}.$
 - Task execution time: $\sim 1 \, \text{ms}$.



Not directly possible because of granularity issues:

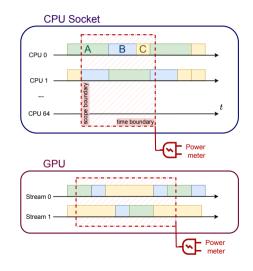
- Time granularity
 - Power meter granularity: $1 \rightarrow 100 \,\mathrm{ms}$.
 - \circ Task execution time: $\sim 1 \, \text{ms}$.
- Spatial granularity
 - Power meter scope: socket (CPU), device (GPU).
 - Tasks run on individual cores / SM threads in parallel.



Not directly possible because of granularity issues:

- Time granularity
 - Power meter granularity: $1 \rightarrow 100 \,\mathrm{ms}$.
 - \circ Task execution time: $\sim 1 \text{ ms}$.
- Spatial granularity
 - Power meter scope: socket (CPU), device (GPU).
 - Tasks run on individual cores / SM threads in parallel.

Objective: model the energy consumption of individual tasks



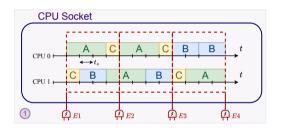
Proposal

Main idea

Use coarse-grain energy measurements and task execution traces to create and solve overdetermined linear systems linking observed energy and fine-grain task energy consumption.

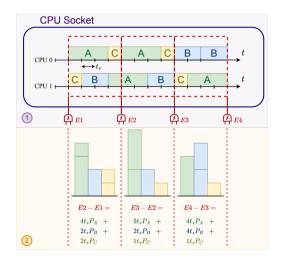
Modeling task energy consumption in StarPU

1. Measure coarse-grain energy consumption and trace task executions at runtime.



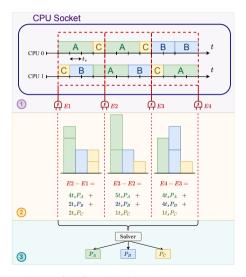
Modeling task energy consumption in StarPU

- 1. Measure coarse-grain energy consumption and trace task executions at runtime.
- 2. After execution, group tasks per energy measurement interval to create linear equations.



Modeling task energy consumption in StarPU

- 1. Measure coarse-grain energy consumption and trace task executions at runtime.
- 2. After execution, group tasks per energy measurement interval to create linear equations.
- 3. Solve the resulting linear system to get tasks power consumption.



Implementation

Measuring the energy consumption

energy-reader, a lightweight C library and API for querying software energy counters.

Access monotonic energy counters from:

- AMD and Intel CPUs with Running Average Power Limit (RAPL) counters.
- Nyidia GPUs with NVML.
- AMD GPUs with ROCm-SMI.
- HPE Cray clusters with PM counters.

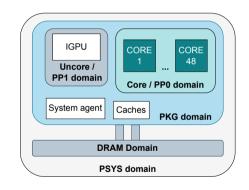


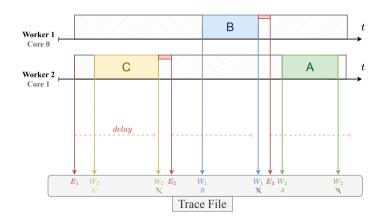
Figure 4: RAPL domains hierarchy

Tracing energy and tasks in StarPU

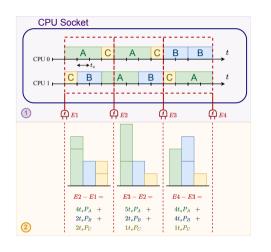
StarPU has a probe based tracing system logging task executions.

We use the active waiting loop of CPU workers to measure and log energy values.

Output: timestamped trace file with energy and task events.



Building the linear system



energy-solver, a python module to build and solve linear systems from StarPU trace files.

Matrix system representation:

$$\begin{pmatrix} 4t_s & 2t_s & 2t_s \\ 5t_s & 2t_s & 1t_s \\ 4t_s & 4t_s & 1t_s \end{pmatrix} \begin{pmatrix} P_A \\ P_B \\ P_C \end{pmatrix} = \begin{pmatrix} E_2 - E_1 \\ E_3 - E_2 \\ E_4 - E_3 \end{pmatrix}$$

Solving the linear system

In practice, the matrix is tall:

$$\begin{pmatrix} 4t_s & 2t_s & 2t_s \\ 5t_s & 2t_s & 1t_s \\ 4t_s & 4t_s & 1t_s \\ \dots & \dots & \dots \\ \dots & \dots & \dots \\ \dots & \dots & \dots \end{pmatrix} \begin{pmatrix} P_A \\ P_B \\ P_C \end{pmatrix} = \begin{pmatrix} E_2 - E_1 \\ E_3 - E_2 \\ E_4 - E_3 \\ \dots \\ \dots \\ \dots \end{pmatrix}$$
 we use ridge regression to solve a regularized version of this problem.

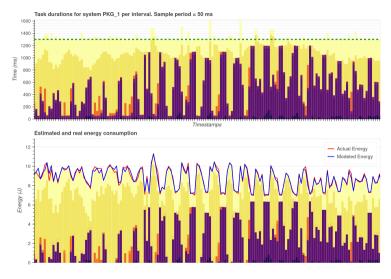
Given an overdetermined system $\mathbf{A}\mathbf{x} = \mathbf{b}$. a solution can be approached by solving a

$$\lim_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$

Visualizing linear systems and solutions

Web application for visualization:

- top barchart: time distribution of tasks per measurement interval
- bottom barchart: modeled task energy distribution per interval and measured energy



Validation

Testing Environment

Experiments were run on Grid5000 and PlaFRIM testbeds.

Cluster	CPU	GPU	Memory
enbata grouille suroit paradoxe	2 × AMD EPYC 9334 2 × AMD EPYC 7452 2 × AMD EPYC 9224 2 × Intel Xeon Gold 5320	2 × AMD MI210 (64 GiB) 2 × Nvidia A100 (40 GiB) -	384 GiB 128 GiB 256 GiB 384 GiB

We test applications from dense and sparse linear algebra libraries:

- chameleon: LU solver (dgesv_nopiv), matrix inversion (dpoinv)
- qr_mumps: QR solver (dqrm_spgeqr)

Energy prediction accuracy: method

Each application is run 30 times on each node under three StarPU schedulers:

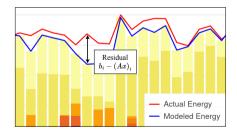
- dmdas: history-based model
- lws: local work stealing
- random: random scheduling

We assess prediction accuracy for one run with the mean absolute percentage error:

$$\mathrm{MAPE} = \frac{100}{m} \sum_{i=1}^{m} \left| \frac{b_i - (A \boldsymbol{x})_i}{b_i} \right|$$

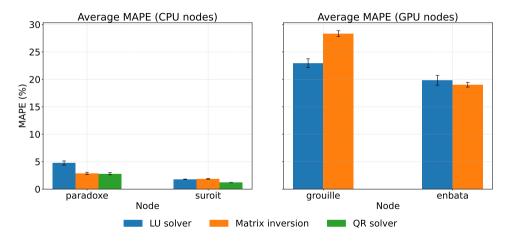
 $b_i: \ measured \ energy \ of \ interval \ i$ $(A \textbf{x})_i: \ predicted \ energy \ for \ interval \ i$

 $\mathbf{m}: \ \mathbf{number} \ \mathbf{of} \ \mathbf{intervals}$



Energy prediction accuracy - results

Model is accurate on CPU (95-99%) but not on GPU (72-81%).



Model portability - method

Can a model obtained from a single run be used to predict the energy consumption of other runs?

Method:

- create a solution from a single run (training);
- apply the solution to the 29 other program runs (testing);
- compute accuracy metrics (MAPE).

Model portability - results

A model can be used to predict the energy consumption of other runs on CPU with high accuracy and high precision:

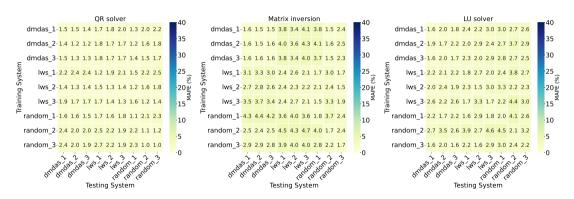


Figure 5: Model portability MAPE matrix for node suroit (AMD CPU)

Model portability - results

On GPU, results show low accuracy but high precision:

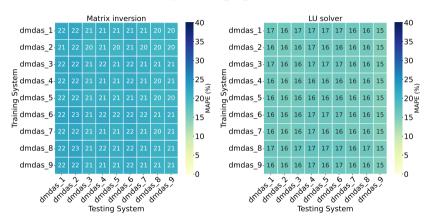


Figure 6: Model portability MAPE matrix for node enbata (AMD GPU)

GPU results overview — NVIDIA A100

Potential improvements:

- NVML energy counters may be erroneous due to subsampling.¹
- Improve GPU kernel execution tracing.

Z. Yang, K. Adamek, and W. Armour, Accurate and Convenient Energy Measurements for GPUs: A Detailed Study of NVIDIA GPUs Built-In Power Sensor, SC24, Nov. 2024.

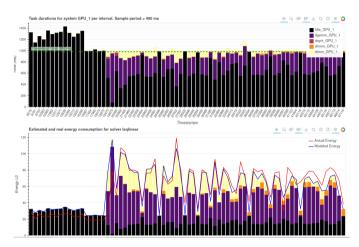


Figure 7: Chameleon matrix inversion run barcharts on grouille (A100).

GPU results overview - AMD MI210

We observe 2 phases on AMD GPUs runs:

- Constant frequency, lower power consumption variability.
- 2. Highly variable frequency with large impact on power.

Need to account for variable frequency in the model.

Figure 8: visualization of a chameleon matrix inversion run on enbata (MI210) $\,$

Conclusion

Conclusion

Fine-grain task energy consumption modelisation based on:

- Software power meters measurements.
- StarPU execution traces.
- Solving a least square problem.

Note: does not require additional hardware counters.

Achieves accurate and portable task energy consumption model on CPU (95-99 % accuracy), with room for improvements on GPU (72-81 % accuracy).

Future works

Improve GPU task power modeling.

Goal: implement energy aware scheduling policies to StarPU.

Numpex perspectives:

- On multi CPU, multi GPU nodes, powercap devices and create task energy profiles per device (Albert).
- Extend the methodology to other programming paradigm and trace models (Catherine).

Thank you

Paper data and results:

 $\rm https://gitlab.com/JulesRisse/cluster-paper$

Contributions:

energy-reader

energy-solver

Appendix - RAPL domains

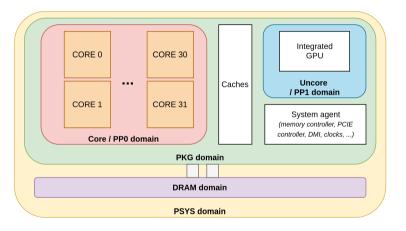
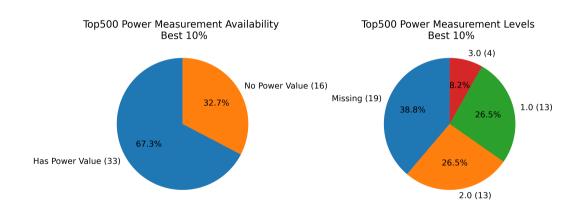


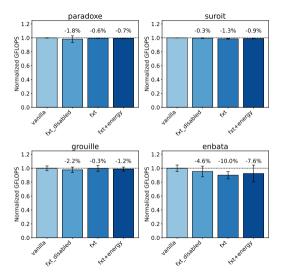
Figure 9: RAPL domains

Appendix - top500 power measurement levels

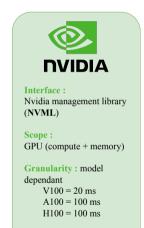
Method: https://www.top500.org/static/media/uploads/methodology-2.0rc1.pdf

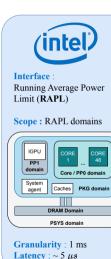


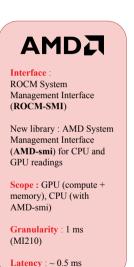
Appendix - StarPU energy measurement overhead



Appendix - energy-reader supported vendors



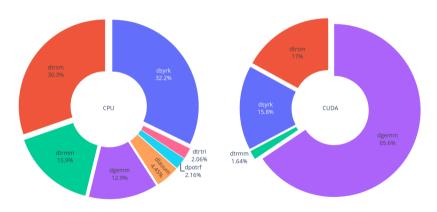




Latency: ~ 5 ms

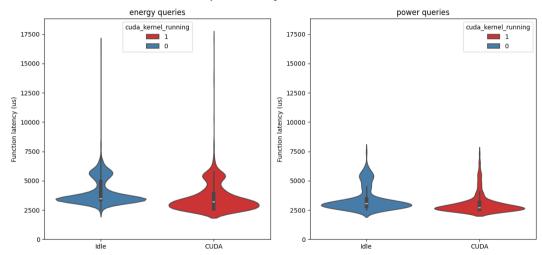
Appendix - Chameleon kernel distribution

Operation: dpoinv



Appendix - NVML latency

Function latency distribution on grouille-1 (Nvidia A100 (40 GiB))



Appendix - AMD GPU telemetry

