
Dyablo
A new hardware-agnostic AMR code for Exascale

Arnaud Durocher (arnaud.durocher@cea.fr)
Maxime Delorme (maxime.delorme@cea.fr) - CEA DRF/IRFU/DEDIP/LILAS

Numpex - Exa Soft General Meeting - 25/09/2025

mailto:arnaud.durocher@cea.fr
mailto:maxime.delorme@cea.fr

HPC needs for Astrophysics
Simulate physical phenomena at every scale

Cosmology
Extreme Horizon

(RAMSES)

Galaxies
(RAMSES)

Solar/Stellar
(ASH)

An ever-growing need for computing power to better understand the universe

2

Towards Exascale
A diversity of new supercomputer architectures

Older CPU architectures
 x86, Intel, AMD, …
● Low energy efficiency, Low power density
=> Need a lot of compute nodes

Newer GPU architectures (Exascale)
FR : Jean-Zay, Irene (Nvidia), Ad-Astra (AMD)

EU: LUMI (Finland, AMD), Leonardo (Italy, Nvidia)

US : Frontier (AMD), Summit, Sierra (Nvidia)

● Better energy efficiency, More power per node
● Massively parallel shared memory architectures
=> More efficient but harder to code

And other new vector architectures : ARM (A64FX, EPI), RISC-V, … Computing power in French national centers (GENCI 2021)

New architecture for Exascale are harder to program and need new software stacks
3

AdAstra @
CINES

Dyablo
Replacing the software stack for Exascale

Older applications and Exascale
Ex : RAMSES - Failed to port to GPU (contrat de progres - Idris - 2019)

● Older languages (Fortran) and prog. models
● No shared-memory parallelism (MPI only)

● Sequential algorithms
=> Need new software stack and algorithms

Dyablo’s software stack
● Written in C++, uses external libraries (HDF5, PABLO, …)

● Kokkos + MPI parallelism
● New parallel algorithms
=> Supports Exascale Hardware

4

+

Dyablo
Leverage current software development methods

Development of older simulation codes
● One-man codes : physicists also optimize code
● Code from scratch : not leveraging libraries
● Physical model are becoming more complicated
● Code is harder to optimize (new architectures)
=> Need “separation of concerns”
Code is written by code experts and physics kernels are written by physicists

Dyablo’s development organization
● Modular : plugins for kernels, IOs, …
● Uses abstract interfaces to separate optimization

details from physics kernels

Encourage collaboration :
● Software development / support (CEA DEDIP)

○ Write abstract interfaces perform operations
on the AMR mesh

○ Optimize behind the scene algorithms
● Physics labs : (ex: CEA DAp Whole-Sun, …)

○ Write physics kernels using this interface
○ Create applications based on dyablo
○ Provide feedback for the software dev. team

5

Software
Write efficient GPU code

Physics
Write Physics Kernels

Provide abstract
interfaces

Feedback on
Interfaces / features

Features in Dyablo
Address simulation needs for the astrophysical community

Multi-physics simulations
● Hydrodynamics / MHD
● Self-Gravity
● Particles
● …

Adaptive Mesh Refinement (AMR)
● Wide range of time/space scales in same simulation

Massively parallel simulations :
● Shared-memory parallelism with Kokkos (CPU, GPU, …)

● Distributed parallelism with MPI

Features in Dyablo will evolve with the specific needs of the involved laboratories
● RAMSES Community (DAp, …) Same needs as RAMSES, but at Exascale : dark matter self-gravity, star or galaxy formation, …
● Whole Sun (DAp) - Solar simulation : Convection, radiative transfer, spherical geometry, …

Extreme Horizon
(RAMSES)

6

AMR in Dyablo
Adaptive Mesh Refinement (as in RAMSES)
● More resolution in regions of interest
● Octree-based AMR mesh (cartesian AMR)
● Dynamic mesh changing at every timestep
=> AMR cycle may be costly, access patterns are random

Refined mesh for a Sedov Blast in Dyablo

7

Compute dt

MPI update Ghosts

Compute Refinement
Criterion

Refine/Coarsen
+ 2:1 balance

Physics Kernels

Load Balancing

AMR
Cycle

t = t + dt

AMR on GPU in Dyablo
GPU Data Structures for the AMR Octree

8

Finite Volume Scheme
For each cell :

1. Compute Gradients/Reconstruction
2. Flux computation (Riemann solver)
3. Update Cell

=> Need neighborhood (stencil)

Octree associated with mesh :
● How to iterate on cells?
● How to get neighbors?

1 32 4

5 6 7

Maillage AMR

1

3

2

4
5

6 7

AMR mesh :
● How to store physical fields?

AMR on GPU in Dyablo
GPU Data Structures for the AMR Octree

Storing and updating the AMR Octree
● Chained structures not efficient on GPU
● Neighbors must be close in memory
=> Fields are stored in arrays (Kokkos::View)

=> Cells are stored in Morton Order (Z-curve)

Accessing neighborhood
● “Linear octree”
● Using hashmap to find neighbors (Kokkos::UnorderedMap)

Modularity : 2 AMR backends
● PABLO : 3rd party CPU only library

○ 2 Octree representations for CPU/GPU (+translations)
● Dyablo : our own backend based on Kokkos

○ GPU compatible, more flexibility

9

1 2

3 4
5

6 7

AMR mesh

1 32 4

5 6 7

Associated Octree

AMR on GPU in Dyablo
Finding neighbors

10

Unstructured linear tree
● index : of the cell in Morton order (Z-curve)
● position : refinement level and position on the

regular grid at this level
● Convert : index -> position : array of positions
● Convert : position -> index : hashmap

Maillage AMR

Request a neighbor from an index:
1. index -> position (Array)
2. Arithmetics on position

(neighbor could be at a different level)

3. Neighbor’s position -> Neighbor’s index

2
Niv. 2
(2,0)

3
Niv. 2
(3,0)

4
Niv. 2
(2,1)

5
Niv. 2
(3,1)

1
Niv. 1
(0,0)

6
Niv. 2
(0,1)

7
Niv. 2
(1,1)

À gauche de 4 :
1. 4 -> Niv. 2 : (2,1)
2. À droite : Niv. 2 : (2-1,1)
3. Niv. 2 : (1,1) n’existe pas :

On cherche au niveau 1 : Niv. 1 : (0,0)
4. Niv. 1 : (0,0) -> 1

Hashmap
Key/value container that able to “quickly” (O(1)) a value
(index) associated to the key (position)

● Kokkos::UnorderedMap
● Key : position; Value : index

Kernels are written using abstract interfaces :
● User friendly and readable by normal humans
● Optimization possible without changing kernel code

Apply function on each cell :
foreach_cell()

● Lambda-based loop
● Hide Kokkos

Access data :
CellArray, CellIndex

● Hide mem. Layout
● Hide index computation
● AMR neighbor access

AMR on GPU in Dyablo
Write AMR Kernels

Maillage
AMR

1

3

2

4
5

6 7

11

Kernels are written using abstract interfaces :
● User friendly and readable by normal humans
● Optimization possible without changing kernel code

Apply function on each cell :
foreach_cell()

● Lambda-based loop
● Hide Kokkos

Access data :
CellArray, CellIndex

● Hide mem. Layout
● Hide index computation
● AMR neighbor access

AMR on GPU in Dyablo
Write AMR Kernels

Maillage
AMR

1

3

2

4
5

6 7

12

Kernels are written using abstract interfaces :
● User friendly and readable by normal humans
● Optimization possible without changing kernel code

Apply function on each cell :
foreach_cell()

● Lambda-based loop
● Hide Kokkos

Access data :
CellArray, CellIndex

● Hide mem. Layout
● Hide index computation
● AMR neighbor access

AMR on GPU in Dyablo
Write AMR Kernels

Maillage
AMR

1

3

2

4
5

6 7

13

AMR on GPU in Dyablo
Block-based AMR

Block-based AMR
● Store cartesian blocs of cells at leaves of the Octree
=> Cartesian grids better for GPU
=> Octree is smaller : AMR cycle is faster

Storage
● Cells un cartesian order inside blocs in morton order
● i,j,k index to get neighbors inside block

Cell Based
600k Octants

600k Cells

Block Based
18k Octants
1100k Cells

14

Maillage
AMR

1

3

2

4
5

6 7

3… 4 5 …

AMR Grid

Storage in a 4D* View

Hierarchical parallelism :
● foreach_patch / foreach_cell
● Patches depend on implementation :

Single Block / Group of blocks / Parts of Blocks
Use Intermediate memories

● reserve/allocate_tmp
● Allocation depends on implementation :

Global Memory / Kokkos scratch
2 Implementations for now

● Groups :
Patches are groups of blocks (e.g 1024 blocks)
Temporaries allocated in global memory, reused between blocks
=> Less memory footprint than temps in full-arrays

● Scratch
Patches are a single block
Temps in scratch memory
(needs more work, blocks are too big for shared-memory)

AMR on GPU in Dyablo
A word on hierarchical parallelism

15

3… 4 5 …Global Fields

3 4 5 ……
Ghosted temporaries

Application #1
Solar convection benchmark towards whole sun simulations (DAp ERC-Synergy Whole Sun)

16

Credit: Whole Sun website

Credit: NSO/NSF/AURA/DKIST

Works on CPUs and GPUs, with AMR, Results consistent with similar codes
=> Adding physics is easy thanks to separation of concerns

http://wholesun.eu

Solar convection slab :
● Convection slab:

○ Hydro + TC + viscosity + cooling
● 3-7 refinement levels

○ Base resolution 128x128x32
○ Max resolution 2048x2048x512
○ 30.6M cells per domain

● Horizontal tiling per MPI process
○ Load-balancing is ensured

● 100 iterations, 1 AMR cycle per iteration
● Scalability tested on Jean-Zay and

Ad-Astra
○ CPU : CSL (JZ), Genoa (AA)
○ GPU : v100 (JZ), a100 (JZ), MI250X (AA)
○ Tested up to 2048 GPUs ~62 billion cells

Weak scaling benchmarks
Use case

17

Replication on N MPI processes

18

Weak scaling benchmarks
CPU results

(# Sockets)

Jean Zay CPU (2 x Intel Xeon Gold 20 cores) Ad Astra CPU (2 x AMD Epyc Genoa 96 cores)

(# Sockets)

19

Weak scaling benchmarks
GPU results

Ad Astra GPU (8 x AMD MI250x)Jean Zay GPU (8 x Nvidia A100)

(# GPUs)
(# GPUs = # GCDs)

20

Application #2
Cosmological radiative transfer

Setup :
● Collaboration with Observatoire de Strasbourg (D. Aubert, O.

Marchal)
● Periodic expanding box (super-comoving coordinates)
● Solving for :

○ Hydro (mesh + particles)
○ Self-Gravity
○ Radiative transfer (M1)

● Allows for the simulation of large structure formation and ionization
● Validation tests :

○ Zeldovitch pancake
○ Stromgren sphere

A box of 64^3 points of width 4 Mpc
In blue : DM particles
In red: Ionized regions

21

Leveraging Exascale architectures with Kokkos
Performance Portability with Kokkos
● Dyablo runs on CPUs (Intel, AMD, ARM*)
 and GPUs (Nvidia, AMD*, Intel**) with one codebase
● Performance and Scalability
● Hide some of the GPU code complexity

Adapted AMR algorithms for GPUs
● Hashmap AMR Octree
● Block-based AMR
● Hide complexity behind abstract interfaces

 Proof that Separation of concerns works for AMR at Exascale in Dyablo

Two applications showcased
Solar physics
● Cartesian slabs over a few AMR levels
● MHD + diffusion operators
● Comparison with state of the art codes
● Weak scaling benchmark up to 2048 GPUs and

~50k CPU cores

Cosmology
● Expanding coordinates
● Particle-Mesh integration
● Hydro + Gravity + Radiation

More to come from collaborations at CEA, CNRS and the various partnerships in
astrophysics labs : dust, stellar formation, galaxy formation, star-planet

interaction, stellar physics, etc.

Dyablo - Projects, community and collaborations
Physics/Applicative projects :
● Whole Sun : ERC Synergy on solar physics
● GINEA : Groupement d’Instrumentation Numérique pour l’Exascale en Astrophysique (GT

CNRS) -> Cosmology, Galaxy formation
● PEPR Origins : “From the formation of planets to life” -> 3 postdocs/PhD students potentially

working on dyablo for the implementation of new physics.
○ Two confirmed working on dust and gravitational solvers.

22

HPC/Computer science projects
● EUPEX : European Pilot for Exascale -> Porting the code to ARM architectures
● CExA : Exascale at CEA -> Working jointly with kokkos to improve the code and the

performances
○ Post-doc on Kokkos kernels performance

● PEPR Numpex
○ Exa-DI demonstrator
○ Post-doc on AMR data formats for post processing

23

Challenges for AMR at Exascale
IOs and visualization formats and tools

Build data format suited for AMR
● To store efficiently :

○ Use hierarchical properties for efficient storage/compression
○ Take into account block-based approaches

● For efficient post-processing (ex : Level of details, partial load…)
Our experience : Unstructured data is too heavy

(30.6Mcells ~ 3.83Gb of geometry + 1.2Gb of physics data for a pure hydro run)

Build post-processing tools
● User friendly tools :

○ Features : (Extract regions, statistics, slices, … and many more)
○ Fast and light enough to run on post processing machines

Our experience: paraview is not light enough (needs to load whole mesh at once)

Leads for possible solutions : (both need adaptation for block-based)
● Custom format and tools : e.g. LightAMR
● HypertreeGrid in paraview

24

Challenges for AMR at Exascale
Implicit methods for diffusion operators

Time-stepping issues with diffusion solvers
● Hyperbolic CFL scales as Δx

○ 20 active AMR levels -> dtmax/dtmin ~ 106

● Parabolic CFL scales as Δx2

○ 20 active AMR levels -> dtmax/dtmin ~ 1012

● Explicit integration is impossible.
● Possible solution :

○ IMEX methods where diffusive steps are solved implicitly
○ BUT : IMEX methods mixed with LTS are notoriously difficult to implement and to parallelize
○ BUT (2) : Astrophysics simulation tend to be heavy on memory and cannot afford the cost of

matrix based linear solvers -> Matrix-free methods should be privileged
● Possible solution #2 :

○ Using STS or RKL methods.
○ BUT : Can subcycling make up for the orders of magnitudes differences in dt in the extreme

cases ?

25

Challenges for AMR at Exascale
Kernel performance for all architectures

Kokkos as a performance portability layer
● Runs on every target architecture so far
● But performance portability isn’t perfect
=> CPU and GPUs have different bottlenecks that should be

handled differently
● Store vs recompute, data layout, local memories …
We need Kokkos optimization expertise to optimize kernels

Optimize kernels
● Efficiently use Kokkos performance portability tools

(View layout, hierarchical parallelism, scratch memory)
● Write different versions for different backends

(Store vs recompute, …)

We would like to build expertise, tools and methods to optimize Kokkos kernels in Dyablo

Post-doc with CExA (Jean-François David)
● Tools to Extract kernels to replay and profile
● Find optimizations

○ Kernel parameters
cuda block size, etc…

○ Different implementations
Store in temporaries / recompute

● Auto tuning to find the best combination for any
architecture

