Dyablo

A new hardware-agnostic AMR code for Exascale

Arnaud Durocher ()
Maxime Delorme () - CEA DRF/IRFU/DEDIP/LILAS
Numpex - Exa Soft General Meeting - 25/09/2025

mailto:arnaud.durocher@cea.fr
mailto:maxime.delorme@cea.fr

HPC needs for Astrophysics

Simulate physical phenomena at every scale

z=0.2
(2 Gyr ago)
Cosmology Galaxies Solar/Stellar
Extreme Horizon (RAMSES) (ASH)
(RAMSES)

An ever-growing need for computing power to better understand the universe

Towards Exascale

A diversity of new supercomputer architectures

Older CPU architectures

x86, Intel, AMD, ...

e Low energy efficiency, Low power density
=) Need a lot of compute nodes

Newer GPU architectures (Exascale)
FR: Jean-Zay, Irene (Nvidia), Ad-Astra (AMD)
EU: LUMI (Finland, AMD), Leonardo (Italy, Nvidia)
US : Frontier (AMD), Summit, Sierra (Nvidia)

e Better energy efficiency, More power per node
e Massively parallel shared memory architectures
=) More efficient but harder to code

And other new vector architectures : ARM (A64FX, EPI), RISC-V, ...

PF'OD/S = Total CPU computing power

Total GPU computing power

1000

100

10

0,1
2009 2011 2013 2015 2017 2019 2021

Jean Zay @ AdAstra @
IDRIS CINES

Computing power in French national centers (GENCI 2021)

New architecture for Exascale are harder to program and need new software stacks

Dyablo

Replacing the software stack for Exascale

L kokkos
+
A7MPI

Dyablo’s software stack

e Written in C++, uses external libraries (HDF5, PABLO, ...)
e Kokkos + MPI parallelism

e New parallel algorithms

= Supports Exascale Hardware

Older applications and Exascale

Ex : RAMSES - Failed to port to GPU (contrat de progres - Idris - 2019)
e Older languages (Fortran) and prog. models

e No shared-memory parallelism (MPI only)

e Sequential algorithms

=) Need new software stack and algorithms

Dyablo

Leverage current software development methods

Development of older simulation codes Dyablo’s development organization

e One-man codes : physicists also optimize code e Modular : plugins for kernels, 10s, ...

e Code from scratch : not leveraging libraries e Uses abstract interfaces to separate optimization
e Physical model are becoming more complicated details from physics kernels

e Code is harder to optimize (new architectures)
=) Need “separation of concerns”
Code is written by code experts and physics kernels are written by physicists Encou rage collaboration:
e Software development / support (CEA DEDIP)
o Write abstract interfaces perform operations

4 N\
Software on tl'we.AMR mesh '
Write efficient GPU code o Optimize behind the scene algorithms
\ J .
Feedback on Provide abstract e Physics labs : (ex: CEA DAp Whole-Sun, ...)
Interfaces / features interfaces . . . o e
- N o Write physics kernels using this interface
i Pihy,Sin(/ o Create applications based on dyablo
rite ySICS Kerneis .
L J o Provide feedback for the software dev. team

Features in Dyablo

Address simulation needs for the astrophysical community

Multi-physics simulations
e Hydrodynamics/MHD
o Self-Gravity

e Particles
[J

Adaptive Mesh Refinement (AMR)
e Wide range of time/space scales in same simulation

Massively parallel simulations :

e Shared-memory parallelism with Kokkos (CPU, GPU, ...) Extreme Horizon
e Distributed parallelism with MPI (RAMSES)

Features in Dyablo will evolve with the specific needs of the involved laboratories

e RAMSES Community (DAp, ...) Same needs as RAMSES, but at Exascale : dark matter self-gravity, star or galaxy formation, ...
e Whole Sun (DAp) - Solar simulation : Convection, radiative transfer, spherical geometry, ...

AMR in Dyablo

Adaptive Mesh Refinement (as in RAMSES)

e Moreresolution in regions of interest

e Octree-based AMR mesh (cartesian AMR)

e Dynamic mesh changing at every timestep

=» AMR cycle may be costly, access patterns are random

Compute dt

}
MPI update Ghosts

!}

Physics Kernels

}

Compute Refinement
C”tfzr'on Refined mesh for a Sedov Blast in Dyablo
Refine/Coarsen

+ 2:1 balance

!

Load Balancing }

t=t+dt

—/ J _J _J

AMR
Cycle

— N N N O O

AMR on GPU in Dyablo

GPU Data Structures for the AMR Octree

AMR mesh: Octree associated with mesh :
e Howtostore physical fields? e How toiterate oncells?

e Howtoget neighbors?

Finite Volume Scheme
For each cell : v

1. Compute Gradients/Reconstruction

2. Flux computation (Riemann solver) 1 ‘ e e a
3. Update Cell

=> Need neighborhood (stencil)

AMR on GPU in Dyablo

GPU Data Structures for the AMR Octree AMR mesh Associated Octree
Storing and updating the AMR Octree ‘
e Chained structures not efficient on GPU

e Neighbors must be close in memory
m) Fields are stored in arrays (Kokkos: : View)

=) Cells are stored in Morton Order (Z-curve) ‘ e e 0

Accessing neighborhood
e “Linear octree”
e Using hashmap to find neighbors (kokkos: :UnorderedMap)

Modularity : 2 AMR backends
e PABLO : 3rd party CPU only library
o 2 Octree representations for CPU/GPU (+translations)

e Dyablo : our own backend based on Kokkos
o GPU compatible, more flexibility

AMR on GPU in Dyablo

Finding neighbors
Unstructured linear tree

index : of the cell in Morton order (Z-curve)
position : refinement level and position on the
regular grid at this level

Convert :index -> position : array of positions
Convert : position -> index : hashmap

2 3
Niv.2 | Niv.2
1 (2,0) (3,0)
Niv. 1
Niv.2 | Niv.2
(2,1) (3,1)
6 7
Niv. 2 Niv. 2
(0,1) (1,1)

Maillage AMR

Hashmap

Key/value container that able to ‘quickly” (O(1)) a value
(index) associated to the key (position)

e Kokkos: :UnorderedMap

e Key:position; Value:index

Request a neighbor from an index:
1. index-> position (Array)
2. Arithmetics on position
(neighbor could be at a different level)

3. Neighbor's position -> Neighbor’s index

A gauchede 4:
1. 4->Niv.2:(2,1)
2. Adroite:Niv.2:(2-1,1)
3. Niv.2:(1,1) n'existe pas :
On cherche au niveau 1 : Niv. 1:(0,0)
4. Niv.1:(0,0)->1

10

AMR on GPU in Dyablo

write AMR Kernel.s ForeachCell foreach_cell(...);

FieldManager field_manager({IP,IDPDX});
CellArray_ghosted U = foreach_cell.allocate_ghosted_array(

Kernels are written using abstract interfaces : foreschical]. foreach cell(

. "compute_pressure_gradient”,
e User friendly and readable by normal humans u,
e Optimization possible without changing kernel code CELL_LAMBDA(const CellIndex& iCell_U)

double P_left = 0;
Apply function on each cell : CellIndex iCell Uleft = iCell U.getNeighbor({-1,0,0});
-For‘each_ce]_l() if(iCell_Uleft.level diff() >= @)
° Lambda'based |00p elsej:;u:_e P_left = U.at(iCell_Uleft, IP);
e Hide Kokkos {
int nbCells = foreach_sibling<ndim>(
iCell Uleft, U,

Accessdata: [&](const CellIndex& iCell subcell)
CellArray, CellIndex {
PY H|de mem. Layout })P_left += U.at(iCell_subcell, IP);
e Hide index computation P left = P_left/nbCells;
e AMR neighbor access }

double P_right;

Fored
U.at(iCell Uout, IDPDX) = (P_right - P_left) / h;

AMR on GPU in Dyablo

write AMR Kernel.s ForeachCell foreach_cell(...);

FieldManager field_manager({IP,IDPDX});
CellArrav ghosted U = foreach_cell.allocate_ghosted_array(

Kernels are written using abstract interfaces : Rl e .
. “compute_pressure_gradient",
e User friendly and readable by normal humans u,
e Optimization possible without changing kernel code CELL_LAMBDA(const CellIndex& iCell_U)
. double P_left = 0;
Apply function on each cell : CellIndex iCell Uleft = iCell U.getNeighbor({-1,0,0});
foreach_cell() if(iCell_Uleft.level diff() >= @)
_ 1 double P_left = U.at(iCell Uleft, IP);
° Lqmbda based loop o
e Hide Kokkos " ¢

int nbCells = foreach_sibling<ndim>(
iCell Uleft, U,

Access data: / [&](const CellIndex& iCell_subcell)

CellArray, CellIndex {

PY H|de mem. Layout P_left += U.at(iCell_subcell, IP);
ey . . 1)

e Hide index computation P_left = P_left/nbCells;

e AMR neighbor access }

double P_right;
Tt
U.at(iCell Uout, IDPDX) = (P_right - P_left) / h;

AMR on GPU in Dyablo

write AMR Kernel.s ForeachCell foreach_cell(...);

FieldManager field_manager({IP,IDPDX});
CellArray_ghosted U = foreach_cell.allocate_ghosted_array(

Kernels are written using abstract interfaces : f°"efch-ceil-f °"ea°h—°‘°-11§, .
. compute_pressure_gradien >
e User friendly and readable by normal humans u,
e Optimization possible without changing kernel code CELL_LAMBDA(const CellIndex& iCell_U)
double P left = 0:
Apply function on each cell : CellIndex iCell Uleft = iCell U.getNeighbor({-1,0,0});
-For‘each_cell() 1t(1Cell Ulett.level diff() >= 0)
° Lambda'based |00p double P_left = U.at(iCell_Uleft, IP);
else
e Hide Kokkos {
int nbCells = foreach_sibling<ndim>(
iCell Uleft, U,
Access data: [&](const CellIndex& iCell subcell)
CellArray, CellIndex {
PY Hlde mem. Layout })P_left += U.at(iCell_subcell, IP);
e Hide index computation P left = P_left/nbCells;
}

double P_right;

Fored
U.at(iCell Uout, IDPDX) = (P_right - P_left) / h;

AMR on GPU in Dyablo

Block-based AMR

Cell Based Block Based
600k Octants 18k Octants
Block-based AMR 600k Cells 1100k Cells

e Store cartesian blocs of cells at leaves of the Octree
wmp Cartesian grids better for GPU
=) Octree is smaller : AMR cycle is faster

Storage

e Cellsun cartesian order inside blocs in morton order
e ijkindexto get neighbors inside block

AMR Grid

=

2 Storage in a 4D* View

3| 4

AMR on GPU in Dyablo

A word on hierarchical parallelism

Hierarchical parallelism:

foreach_patch / foreach_cell

Patches depend on implementation:
Single Block / Group of blocks / Parts of Blocks

Use Intermediate memories

reserve/allocate_tmp

Allocation depends on implementation:
Global Memory / Kokkos scratch

2 Implementations for now

Groups:
Patches are groups of blocks (e.g 1024 blocks)

Temporaries allocated in global memory, reused between blocks
=> Less memory footprint than temps in full-arrays

Scratch
Patches are a single block
Temps in scratch memory

(needs more work, blocks are too big for shared-memory)

Ghosted temporaries

int nb_ghosts = 1;
PatchArrav::

foreach_cell.foreach_patch("update",
PATCH_L/ const ForeachCell::Patch& patch)

PatchArray Qpatch = patch.allocate_tmp(Qpatch_);

patch.foreach_cell(Qpatch,
3DA(const CellIndex& 1Cell_Qpatch)

patch.foreach_cell(Qpatch,
Lol
});

Global Fields

15

Application #1

Solar convection benchmark towards whole sun simulations (DAp ERC-Synergy Whole Sun)

Credit: Whole Sun website

Works on CPUs and GPUs, with AMR, Results consistent with similar codes

=> Adding physics is easy thanks to separation of concerns 16

http://wholesun.eu

Weak scaling benchmarks

Use case

Solar convectionslab :
e Convection slab:
o Hydro+ TC + viscosity + cooling
e 3-7refinement levels
o Baseresolution 128x128x32
o Max resolution 2048x2048x512

o 30.6M cells per domain e sz Sl i @
e Horizontal tiling per MPI process T

o Load-balancingis ensured

e 100 iterations, 1 AMR cycle per iteration
e Scalability tested on Jean-Zay and

Ad-Astra
o CPU:CSL(JZ),Genoa (AA)
o GPU:v100 (JZ),a100 (JZ), MI250X (AA)
o Tested up to 2048 GPUs ~62 billion cells

Replication on N MPI processes

runtime (s)

Weak scaling benchmarks
CPU results

Jean Zay CPU (2 x Intel Xeon Gold 20 cores)

700
600 -
500 - — — ,
400 - = = -
Timers
300 — W Autre
N dt
200 - = MPIghosts
s AMR
B Viscosity
100 = s ThermalConduction -
mmm Hydro
0= —— —p— g | | |
2 4 8 16 32 64 128 256 512

MPI processes (# Sockets)

runtime (s)

Ad Astra CPU (2 x AMD Epyc Genoa 96 cores)

300
Timers 288.7
[Autre
250 — E dt
s MPIghosts
I AMR
200 - . Viscosity i
pm ThermalConduction
mmm Hydro
T Y]
100 -
50 g
0- i

1 1 1 1
16 32 64 128 256

MPI processes (# Sockets)

18

runtime (s)

Weak scaling benchmarks

GPU

60 -

results

Jean Zay GPU (8 x Nvidia A100) Ad Astra GPU (8x AMD MiI250x)
50

Timers
Autre
dt
MPIghosts
AMR
Viscosity
ThermalConduction

40

32.0 32.3 32.9 33.4 33.2

20 -

10 -

0-

63.1
42.9
_39.7
Hydro 37.5 36.0 %) 30
32.8
26.9 i il i Timers
] 20 - mmwm Autre
- , _ . . . = dt
B MPIghosts
10 ™ AMR
i = & i — B Viscosity
B ThermalConduction
I Hydro
' , ; é 1'6 3l2 6I4 12IS 2.’;6

1 2 -

runtime (s)

4 8 16 64 128 256 512 1024 2048
MPI processes (# GPUs = # GCDs)

o
1
'_I_I
N-I

MPI processes (# GPUs)

19

Application #2

Cosmological radiative transfer

Setup:
e Collaboration with Observatoire de Strasbourg (D. Aubert, O.
Marchal)

e Periodic expanding box (super-comoving coordinates)
e Solvingfor:
o Hydro (mesh + particles)
o Self-Gravity
o Radiative transfer (M1)
e Allows for the simulation of large structure formation and ionization
e Validation tests:
o Zeldovitch pancake
o Stromgren sphere

2=0.020

0.004

0.002

& 0000

A box of 64”3 points of width 4 Mpc
In blue : DM particles
In red: lonized regions

~0.002

~0.004

Leveraging Exascale architectures with Kokkos

Performance Portability with Kokkos Adapted AMR algorithms for GPUs
e Dyablo runs on CPUs (intel, AMD, ARM*) e Hashmap AMR Octree
and GPUs (Nvidia, AMD* Intel**) with one codebase e Block-based AMR
e Performance and Scalability e Hide complexity behind abstract interfaces

e Hide some of the GPU code complexity

mm) Proof that Separation of concerns works for AMR at Exascale in Dyablo

Two applications showcased

Solar physics Cosmology
e Cartesianslabs over afew AMR levels e Expanding coordinates
e MHD + diffusion operators e Particle-Mesh integration
e Comparison with state of the art codes e Hydro + Gravity + Radiation
e Weak scaling benchmark up to 2048 GPUs and
~50k CPU cores

More to come from collaborations at CEA, CNRS and the various partnerships in
astrophysics labs : dust, stellar formation, galaxy formation, star-planet

21
interaction, stellar physics, etc.

Dyablo - Projects, community and collaborations

Phy5|cs/AppI|cat|ve projects :
Whole Sun : ERC Synergy on solar physics

GINEA : Groupement d’Instrumentation Numérique pour I'Exascale en Astrophysique (GT
CNRS) -> Cosmology, Galaxy formation

PEPR Origins : “From the formation of planets to life” -> 3 postdocs/PhD students potentially
working on dyablo for the implementation of new physics.

o Two confirmed working on dust and gravitational solvers.

HPC/Computer science projects

EUPEX : European Pilot for Exascale -> Porting the code to ARM architectures
CEXA : Exascale at CEA -> Working jointly with kokkos to improve the code and the

performances

o Post-doc on Kokkos kernels performance

e PEPR Numpex

o Exa-Dl demonstrator
o Post-doc on AMR data formats for post processing

FRANCE PROGRAMME

7\, DE RECHERCHE

0 27, \\lli7;
A7

D) N
_/ ORIGINES

*EUPEX

European Pilot for Exascale

6’/&

_cexa-projectorg |

Br
[=Y

22

Challenges for AMR at Exascale

I0s and visualization formats and tools

Build data format suited for AMR

e Tostore efficiently:
o Use hierarchical properties for efficient storage/compression
o Take into account block-based approaches

e For efficient post-processing (ex : Level of details, partial load...)

Our experience : Unstructured data is too heavy

(30.6Mcells ~ 3.83Gb of geometry + 1.2Gb of physics data for a pure hydro run)

Build post-processing tools
e User friendly tools:

o Features: (Extract regions, statistics, slices, ... and many more)
o Fast and light enough to run on post processing machines
Our experience: paraview is not light enough (needs to load whole mesh at once)

Leads for possible solutions : (both need adaptation for block-based)
e Custom format and tools: e.g. LightAMR
e HypertreeGrid in paraview

23

Challenges for AMR at Exascale

Implicit methods for diffusion operators

Time-stepping issues with diffusion solvers
e Hyperbolic CFL scales as Ax
o 20 active AMR levels -> dtmax/dtmin ~ 10°
e Parabolic CFL scales as Ax?
o 20 active AMR levels -> dtmax/dtmin ~ 10%?
Explicit integration is impossible.
Possible solution:
o IMEX methods where diffusive steps are solved implicitly
o BUT:IMEX methods mixed with LTS are notoriously difficult to implement and to parallelize
o BUT(2): Astrophysics simulation tend to be heavy on memory and cannot afford the cost of
matrix based linear solvers -> Matrix-free methods should be privileged
e Possible solution #2:
o Using STS or RKL methods.

o BUT: Can subcycling make up for the orders of magnitudes differences in dt in the extreme
cases?

24

Challenges for AMR at Exascale

Kernel performance for all architectures

Kokkos as a performance portability layer Post-doc with CExXA (Jean-Francois David)
e Runson every target architecture so far e Tools to Extract kernels to replay and profile
e But performance portability isn’t perfect e Find optimizations
=> CPU and GPUs have different bottlenecks that should be o Kernel parameters

handled differently cu.da block si.ze, etc... .
e Store vs recompute, data layout, local memories ... o Differentimplementations
We need Kokkos optimization expertise to optimize kernels Store in temporaries / recompute

e Auto tuning to find the best combination for any

. . architecture
Optimize kernels tectl

e Efficiently use Kokkos performance portability tools

(View layout, hierarchical parallelism, scratch memory)
e Write different versions for different backends

(Store vs recompute, ...)

We would like to build expertise, tools and methods to optimize Kokkos kernels in Dyablo

25

