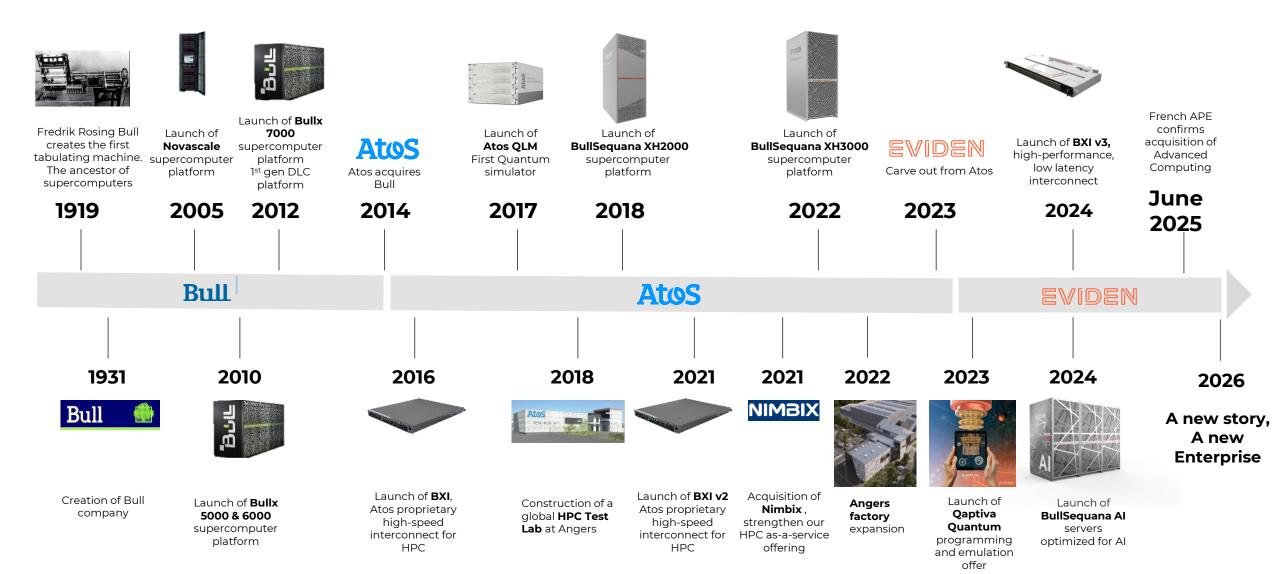


NumPex ExaSoft


25th Sep 2025

David Goudin

david.goudin@eviden.com

Eviden - Europe's Supercomputing Powerhouse A decade of HPC leadership powering European innovation and sovereignty

Eviden: Tracked record in TOP500

A growing number of Eviden systems in TOP500 since 2017

- 55 as "EVIDEN" manufacturer
- +1 as "ParTec/Eviden" manufacturer (JEDI)
- +1 as "NVIDIA" (DCAI Gefion)

- The number of systems in **Europe** (49)
- The number of systems in **South America** (5)
- The number of systems in **India** (3)

The number of systems in TOP500 (WW)

3 systems in TOP20

#1 and #2 in Green500

50 pre-built and interchangeable modules

- 20 IT containers
- 15 power feed containers
- 10+ logistic & support containers (lobby, workshop, warehouse)
- over 2,300m² to form a complete turnkey data center

	Rank	System	Cores	(PFlop/s)	(PFlop/s)	(kW)
	1	Et Capitan - HPE Cray EX255a, AMD 4th Gen EPYC 24C 1.8GHz, AMD Instinct MI300A, Slingshot-11, TOSS, HPE D0E/NNSA/LLNL United States	11,039,616	1,742.00	2,746.38	29,581
	2	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE Cray OS, HPE D0E/SC/Oak Ridge National Laboratory United States	9,066,176	1,353.00	2,055.72	24,607
	3	Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11, Intel D0E/SC/Argonne National Laboratory	9,264,128	1,012.00	1,980.01	38,698
	4	JUPITER Booster - BullSequana XH3000, GH Superchip 72C 3GHz, NVIDIA GH200 Superchip, Quad-Rail NVIDIA InfiniBand NDR200, RedHat Enterprise Linux, EVIDEN EuroHPC/FZJ Germany	4,801,344	793.40	930.00	13,088

Angers Factory

Eviden Own IP Portfolio for HPC/AI/Quantum Computing

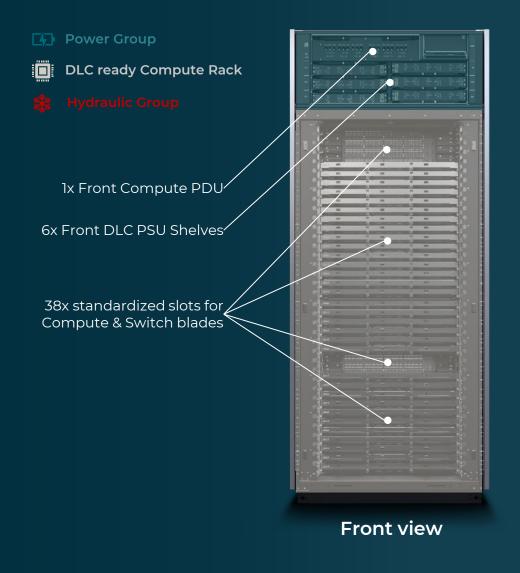
Overview

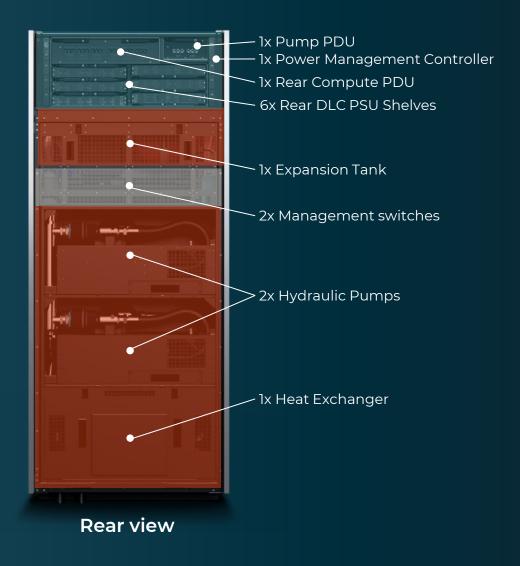
Computing

BullSequana SuperComputers

BXI Interconnect

HPC Software Suites


Large Scale Al

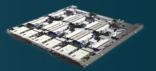


As a Service

BullSequana XH3000


Infrastructure overview

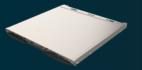
BullSequana XH3000 Blades = A lot of different options


CPU Compute blades

BullSequana XH3140 (codename TRIO)

Available

6x **Intel** Emerald Rapids


BullSequana XH3420

(codename MATO)

Available

, wandbie

6x AMD Turin

BullSequana XH3610

(codename MILO)
In development

6x SIPEARL Rhea 1

GPU Compute blades



BullSequana XH3145-H

(codename TIYA)

Available

1x **NIVIDIA** HGX 4-H100

BullSequana XH3515-HMP

(codename NEBA MaxP)

Available

1x **NVIDIA** HGX CG4

BullSequana XH3515-HMQ

(codename NEBA MaxQ)

Available

2x **NVIDIA** HGX CG4

BullSequana XH3406-3MQ

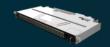
(codename MANA MaxQ)
In development


6x **AMD** MI300-A

High-speed Interconnect switch blades

BullSequana XH32B2-0100

EVIDEN BXIV2



BullSequana XH35IN-0800

(codename W3NM)
Available

NVIDIA InfiniBand NDR

BullSequana XH35ET-0200

(codename W3EM)
Available

NVIDIA High-speed Ethernet

A brief overview of Eviden Teams involved in Applications, Performances, Optimizations

A need of good interactions between Teams

Exploration Center

Explore new technologies and project first performances

CEPP

Applications
optimizations
Collaborative Projects

A&P

Projection of
benchmaks
performances for
Deals on architectures

R&D SW Teams

Development of SW Portfolio Collaborative Projects

CEPP – Center for Excellence in Performance Programming

Experienced data scientists with strong HPC and AI expertise to reduce time-to-simulation and energy-to-solution

Performance optimization, industry-contextualized applications, cluster scalability

Reduced cost & energy, leveraging existing code and best practice, on top of the latest technologies

Optimize

<u>Center for Excellence in Performance Programming (CEPP)</u>

CEPP and R&D Collaborations - HPC AI and Quantum collaboration projects

European technology for exascale

Quantum computing

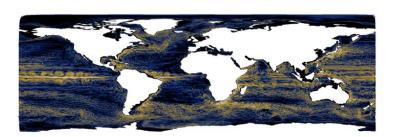
Cloud

Centre of Excellence for computing applications

Customer Centre of Excellence

International collaboration

Code Migration: ICON OpenACC to OpenMP


Case: DKRZ

Methodology

- Translate OpenACC directive to OpenMP
- Comparison between OpenACC and OpenMP

1st Analyze

Analyse the existing ICON OpenACC implementation to assess compatibility and potential challenges in porting to OpenMP.

4nd Evaluate

Evaluate the performance, usability, and porting effort of the OpenMP version against the OpenACC original, across a comprehensive range of GPUs.

2nd Isolate

Isolate the nh_solve function for kernel extraction, leveraging work in the EECliPs project

3rd Convert

Convert the extracted nh_solve kernel to utilize OpenMP targeting constructs.

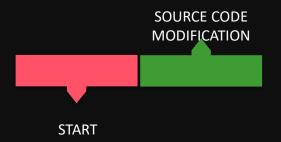
A&P

Applications and Performance Team = Benchmarks dedicated

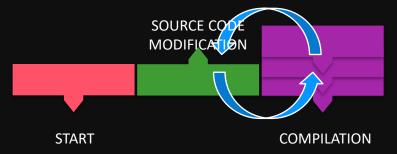
But what is a benchmark work?

Typical "applications"?

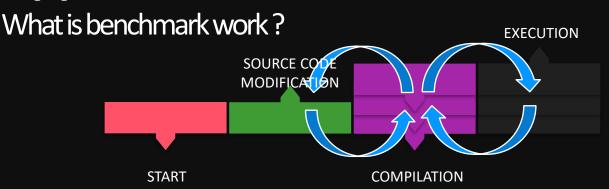
- Typical "Exascale" applications:
 - Abinit, BigDFT, CP2K, GROMACS, LAMMPS, NAMD, OpenFOAM, Quantum Espresso, WarpX, YALES2
- 4 to 6 applications and even more (e.g. Alice Recoque Exascale Supercomputer)


- Kernels to test key system metrics:
 - Compute: HPL (single node & full system)
 - « System »: HPCG (single node & partition)
 - Memory: Stream (BabelStream for GPU)
 - Network: OSU MPI benchmark
 - Latency
 - Bandwidth
 - I/O: IOR

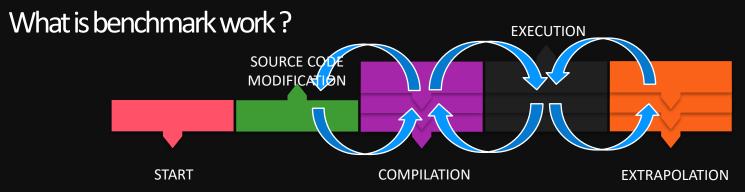
What is benchmark work?

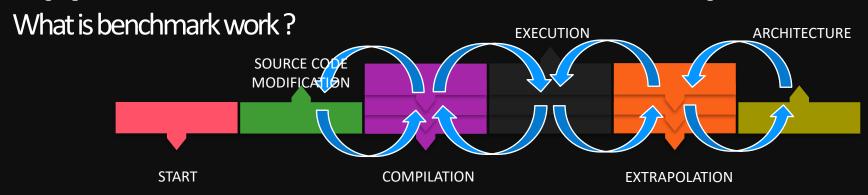

- Ensure benchmark conditions:
 - Reference: measure on existing machine (usually provided by clients)
 - Hardware requirements: Memory, #process/core, GPU, interconnect, filesystem
 - Dependencies: Software, licenses
 - Measurements:
 - test case(s),
 - Reduced test case(s)
 - Application kernel(s) (small part of applications representing most of runtime)
 - Goal: validation, reference time, expectations

What is benchmark work?



- Modify source code (if authorized):
 - Bug correction
 - Cache alignment
 - Introduce more parallelism
 - Overlap communication and compute
 - Accelerator support


What is benchmark work?


- For each benchmark, compilation is optimized with
 - Compiler provider : Intel, AMD, NVIDIA, LLVM, GNU, ...
 - Compiler version: client's reference, up-to-date, ...
 - Compiler options: instruction sets, optimization level, ...
 - Optimized dependencies (libraries, ...)
- A compilation could take several seconds or several hours!

- For each benchmark, execution should be optimized playing with
 - Kernel environment / System tuning
 - Processes binding
 - Submission command
 - OpenMP/OpenACC/libraries tuning
 - MPI tuning
 - Application tuning (application parameters).
- Each test require a new execution and each bottleneck required a new tuning!
- Perform the tasks on various systems if possible reduced test case (or kernel) on targeted system's sample

- For each benchmark, when the best performance is found (sic), benchmark behavior is characterized to extrapolate time on another platform. The characterization required to run several new tests playing with:
 - Frequency => Determines compute characteristics
 - Binding => Determines Memory characteristics
 - Communication (non-blocking/blocking) and profile => Determines communication and imbalance
- This characterization gives input to make the extrapolation:
 - Extrapolate each component (compute/memory/network) from tested system to target
- Do the exercise both on requested metrics AND reduced test case/kernel
- Work with provider(s) (Intel, AMD, and/or NVIDIA, ...) to best match future components characteristics

- This step is a target since the START: optimization path varies according to the goal!
 - (Performance, energy, density...)
- Brainstorming between application specialists and system architects to maximize client criteria:
 - Pure Performance
 - Performance/price
 - Performance/watt
 - Performance/m²
 - Energy
 - Price
 - ...

Eviden provides Large Modern Supercomputing facilities

HPC/AI data centers with multiple, heterogeneous partitions

- More and more complex and different architectures
- Different type and size of partitions, and objectives
- Different type of calculations (FP64 or not)

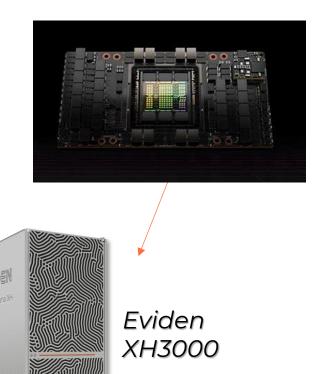
Accelerated (GPUs)

AI (GPUs)

Classic (CPUs)

Prototype

Quantum


partition

of the

Performance

XEON

Size of the partition

Example of Synthetic Benchmarks

Problem

- Very often, the most efficient solvers (from Partners: Intel, AMD, Nvidia)) as HPL, HPL-MxP and HPCG are not open source
 - Except for AMD GPUs (rocHPL, rocHPCG)
- Evolution of Hardware (like for GPUS, FP64 vs other data formats)
- Need of Simulation tools associated (At scale, Performance, Energy) with kernels models/performances for future architectures provided by our partners

Existing task based runtime

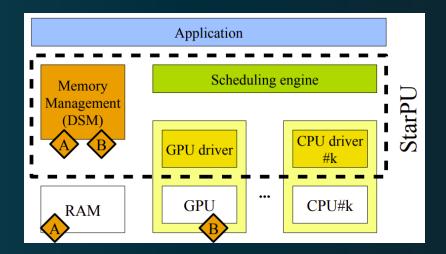
Unexhaustive

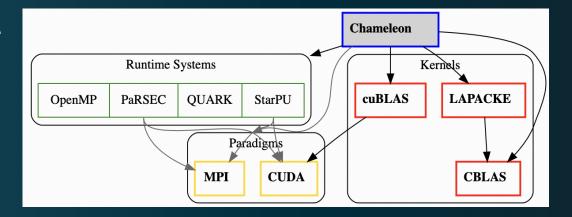
- Shared memory parallelism
 - OpenMP tasks (+ depend clause)
 - Cilk (MIT, Intel)
 - cudaSTF (Nvidia)
 - OmpSs (Barcelona Supercomputing Center)
 -
- Both shared and distributed memory parallelism
 - StarPU (Inria)
 - PaRSEC (University of Tennessee)
 - Charm++ (University of Illinois)
 - High Performance ParalleX (STE||AR group)
 - Legion (University of Stanford)
 - ...

CUDASTF

Collaborations, Solver Part

StarPU

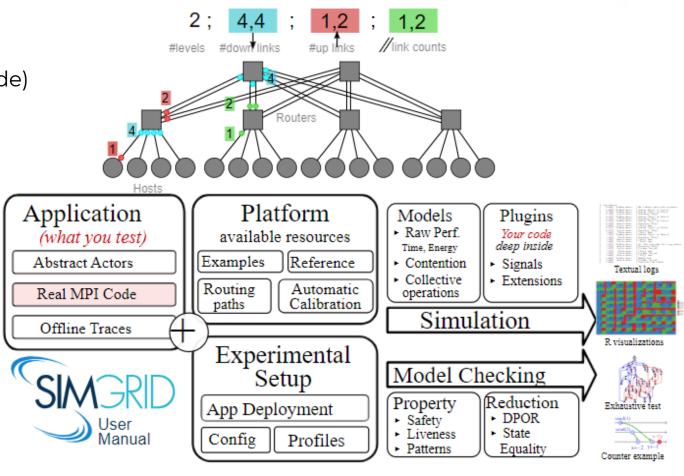

- Task based runtime system, STF model
- Both CPU and GPU (CUDA, OpenCL, HIP, SYCL) drivers
- MPI extension


<u>Chameleon</u>

- Dense linear algebra library on top of runtime systems
- Implements distributed blocked LU algorithm without partial pivoting (among others)

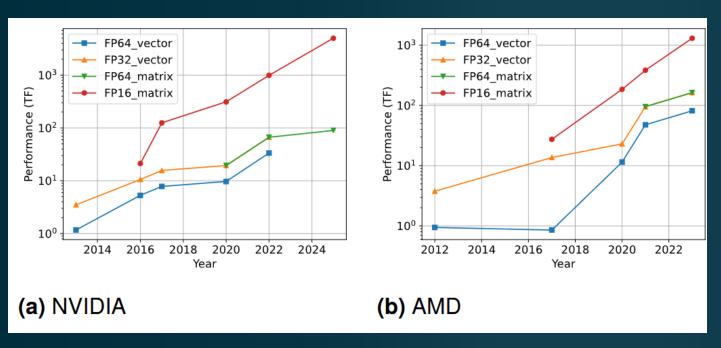
NewMadeleine

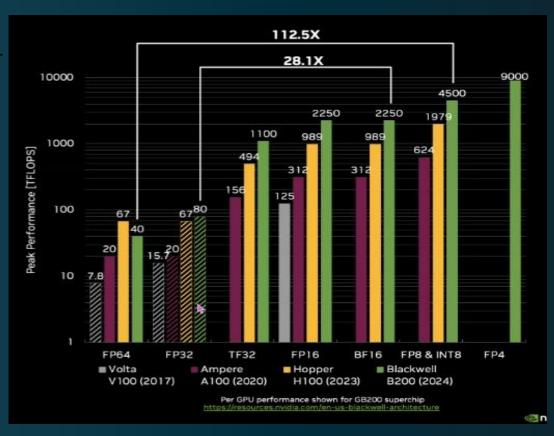
Optimizing Communication Library for High-Performance networks



Collaborations, Simulation Tool Part

- Performance prediction
 - On existing and future architectures (one node)
 - At scale (network performances simulation)
- Sensitivity analysis
- Performance tuning
- Energy efficiency and Energy Performance projection


Energy performance simulation & optimization


Goals:

- 1. Energy-aware simulation: understand and describe power usage
 - Simulate the impact of power capping on performance
 - Predict energy consumption at scale
- 2. Energy-aware performance optimization: leverage perf/power trade-offs
 - Improve dynamic scheduling
 - take into account the performance drop of GPU when CPU is used
 - Optimize for efficiency
 - choose dynamically the architecture with the better GFLOPS/W
 - Ensure a global consumption envelope is not exceeded
 - delay tasks that are not on the critical path

Emulation and Mixed-Precision Context, Evolution of data formats

- "Convergence" of AI and HPC hardware (GPUs, CPU Matrix Cores, ...)
- Speedups reachable, better energy efficiency, if:
 - lowering precision of algorithms;
 - or emulating FP64 GEMM with low precision computations

Source: https://arxiv.org/pdf/2412.19322 (ORNL, 2025).

Possible Links everywhere and every topic of ExaSoft Project for Future Architectures

- Optimization / Compilation
- Numerical libraries
- Runtimes
- Portability
- Profiling Tools
- Energy Optimization
- Extension to other Applications than Synthetic Benchmarks,
- Exascale and Post Exascale Projects

