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Introduction - Context

Task-based Programming

o Motivations:

o Portable frameworks.
o Exploit complex architectures.

e Applications: Directed Acyclic Graph (DAG).

e Runtime systems: scheduling, data management, communications, ...
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Introduction - Context

Task-based Programming

¢ Motivations:
o Portable frameworks. it ||
o Exploit complex architectures. ”

e Applications: Directed Acyclic Graph (DAG). V*

e Runtime systems: scheduling, data management, communications, ...

STF: Sequential Task Flow

e Dependencies:

o Automatically inferred.
o Order of submission.

submit (F, a:RW)

ZEZ) b) submit (G, a:R, b:RW)
’ submit (H, a:R, c:RW)
H(a, c)

wait_tasks_completion ()
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Introduction - Limitations of the STF model

Submission

e Overhead: large number of non-ready tasks.
e Bottleneck: sequential insertion.

e Adaptability 7 static task graphs.
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Introduction - Limitations of the STF model

Submission

e Overhead: large number of non-ready tasks.
e Bottleneck: sequential insertion.

e Adaptability 7 static task graphs.

= How to create more dynamic task-graphs ? =- Recursive tasks graphs !

Granularity

o GPUs versus CPUs.

e Lack of parallelism versus Steady State.

= Steering granularity dynamically 7
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Overview

e StarPU’s Recursive Tasks.

e Introduction of the Splitter component.
e The heterogeneous case:

o A first policy that relies on Linear Programming.
o Improving this policy with a greedy algorithm.
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Recursive Tasks in StarPU
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Recursive Tasks in StarPU
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Recursive Tasks in StarPU

e Recursive task execution:
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Recursive Tasks in StarPU

e Recursive task execution:
o Remain regular task.
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Recursive Tasks in StarPU

e Recursive task execution:

o Remain regular task.
o Insert a subgraph: split.
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Dynamic task graph adaptation : splitting tasks

When do we choose to split task?

Which task should we split?

g @ &z/zéla/_ Exa-Soft, Saclay Thomas Morin



Dynamic task graph adaptation : splitting tasks

When do we choose to split task?

Submission, execution, ...

Which task should we split?
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Dynamic task graph adaptation : splitting tasks

When do we choose to split task?

Submission, execution, ...

Which task should we split?

Efficiency, Completion Time, Current Parallelism
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When do we choose to split tasks

Task life path

app

submission

wait
dependencies

release

scheduler

Exa-Soft, Saclay

queue

data transferq
data fetching

execute

worker

Thomas Morin



When do we choose to split tasks

Adding the splitter

app

reg. task

wait release queue
X scheduler
dependencies
reg. task
rec. task X EE——
splitter
rec. task

Exa-Soft, Saclay
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data fetching

execute

worker
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When do we choose to split tasks

Position of the splitter - trade-off

app

submission

wait reg. task
dependencies

=

]

S

g

Q2

splitter

worker

hedul queue  data transfer execute
scheauler q
data fetching
X
w| | x
a| | @
- Il
sl rec. task
o )
= @
2

subDAG submission
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Which task do we split - Heterogeneous case - Problematic

General example:

e Heterogeneous platform with 2 GPU Nvidia A100 and 2 AMD Zen3 CPU, each with
32 cores.
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Which task do we split - Heterogeneous case - Problematic

General example:

e Heterogeneous platform with 2 GPU Nvidia A100 and 2 AMD Zen3 CPU, each with
32 cores.

e Performing a tiled Cholesky factorization.

1 gpu
Kernel Tcore
GEMM 380
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Which task do we split - Heterogeneous case - Problematic

General example:

e Heterogeneous platform with 2 GPU Nvidia A100 and 2 AMD Zen3 CPU, each with
32 cores.

e Performing a tiled Cholesky factorization.

1 gpu
Kernel | 7 core 1 gpu Caccel)
StarPU 64 cores :
GEMM 380
9.4 (40.4)
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Which task do we split - Heterogeneous case - Problematic

General example:

e Heterogeneous platform with 2 GPU Nvidia A100 and 2 AMD Zen3 CPU, each with
32 cores.

e Performing a tiled Cholesky factorization.

1 gpu
Kernel
1 core 1
m (accel.)

GEMM 380

9.4 (40.4)
TRSM 307

6.5 (45.8)
SYRK 343

11.7 (29.3)
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Which task do we split - Heterogeneous case - Problematic

General example:

e Heterogeneous platform with 2 GPU Nvidia A100 and 2 AMD Zen3 CPU, each with
32 cores.

e Performing a tiled Cholesky factorization.

1 gpu
Kernel
1 core 1
% (accel.)

GEMM 380

9.4 (40.4)
TRSM 307

6.5 (45.8)
SYRK 343

11.7 (29.3)

e Q: Steady state = Which tasks, and how many should be divided ?
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Which task do we split - Heterogeneous case

e A task becomes ready = Recorded by the Splitter.
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Which task do we split - Heterogeneous case

e A task becomes ready = Recorded by the Splitter.
e Each 50-task interval = A Linear Program is called.

e Linear Program'’s aim: minimizing execution time by balancing load between the
PUs.
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Which task do we split - Heterogeneous case

A task becomes ready = Recorded by the Splitter.

Each 50-task interval = A Linear Program is called.

Linear Program’s aim: minimizing execution time by balancing load between the
PUs.

Task Splitting for PUs is required by ensuring minimal parallelism for each type of
PU.

The LP provides ratio = used by the Splitter.
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Which task do we split - Heterogeneous case - Linear Program

Parameters
ot
7 t,l

R, RY
C

MinNy

Variables
exT

Nslt

t
Nel u
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Subject to

te T Set of task types, Number of task not split

of type t at level .

Task number splitting.

t t t p
Ne; +Ns; — nch_ - Ns'
of type u. Z 1u ! Z Pl 1=

u€eER Set of processing unit types, Number of PU
Maximum level of recursion. uER
ueER Minimal wanted number of tasks on each PU
of type u

Total execution time.
teT,I< L Number of split task of type
t and level /.
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Benchmarks - Heterogeneous

The tests were run on PlaFRIM's
sirocco nodes:

2x 32-core AMD Zen3 EPYC 7513 @ 2.6 GHz
2x NVIDIA A100 (40GB)
512 GB (8 GB/core) (©3200 MHz)

Scheduler : Deque Model Data-Aware Ready
(DMDAR)
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Benchmarks - Heterogeneous

The tests were run on PlaFRIM's
sirocco nodes:

2x 32-core AMD Zen3 EPYC 7513 @ 2.6 GHz
2x NVIDIA A100 (40GB)
512 GB (8 GB/core) (©3200 MHz)

Scheduler : Deque Model Data-Aware Ready
(DMDAR)

Tile sizes choosen :
e 3840 : "big" : the most efficient.

e 480 : "small": parallelism, for CPU
cores.

e 1920, 2560 : "mid": trade-off.
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Benchmarks - Heterogeneous - Cholesky

Cholesky Factorization (dpotrf)

TFlop/s
004V 2 + Y 29

0 40000 80000 120000

Matrix order (N)
Version: Tile sizes
Non-Recursive: 1920

Figure 1: Performance comparison between different versions for Cholesky Factorization.
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Benchmarks - Heterogeneous - Cholesky

Cholesky Factorization (dpotrf)

001V 2 + WY 29

0 40000 . 80000 120000
Matrix order (N)

Version: Tile sizes

Non-Recursive: 1920
= Recursive: 3840/1920/480 dynamic

Figure 1: Performance comparison between different versions for Cholesky Factorization.
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Benchmarks - Heterogeneous - Cholesky

Cholesky Factorization (dpotrf)

TFlop/s
004V 2 + QY 29

0 40000 X 80000 120000
Matrix order (N)

Version: Tile sizes

Non-Recursive: 1920
— Recursive: 3840/1920/480 dynamic
= Recursive: 3840/1920/480 static

Figure 1: Performance comparison between different versions for Cholesky Factorization.
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Benchmarks - Heterogeneous - Cholesky

Cholesky Factorization (dpotrf)

00LV 2 + QWY 29

0 40000 80000 120000

Matrix order (N)
Version: Tile sizes
Non-Recursive: 1920 = Recursive: 3840/1920/480 static

= Parallel Workers: 3840
= Recursive: 3840/1920/480 dynamic

Figure 1: Performance comparison between different versions for Cholesky Factorization.
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Benchmarks - Heterogeneous - Cholesky

Cholesky Factorization (dpotrf)

0.

TFlop/s
00LV 2 + QWY 29

0

0 40000 80000 120000
Matrix order (N)

Version: Tile sizes

Non-Recursive: 1920 - - Parsec: 2560
= Parallel Workers: 3840 = Recursive: 3840/1920/480 dynamic
== Magma = Recursive: 3840/1920/480 static

Figure 1: Performance comparison between different versions for Cholesky Factorization.
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Benchmarks - Heterogeneous - without piv

General Matrix Factorization (dgetrf)

00LV 2 + QWY 29

0 40000 80000 120000

Matrix order (N)

Version: Tile sizes
Non-Recursive: 1920 - - Parsec: 2560
= Parallel Workers: 3840
== Magma

Figure 2: Performance comparison between different versions for LU Factorization without piv.
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Benchmarks - Heterogeneous - without piv

General Matrix Factorization (dgetrf)

0.

TFlop/s
00LV 2 + QWY 29

0
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Matrix order (N)

Version: Tile sizes

Non-Recursive: 1920 - - Parsec: 2560
= Parallel Workers: 3840 = Recursive: 3840/1920/480 dynamic
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Figure 2: Performance comparison between different versions for LU Factorization without piv.
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Benchmarks - Heterogeneous - All

Cholesky Factorization (dpotrf) LU Factorization (dgetrf) Cholesky Solve (dposv)

4 o £ 4
0 40000 80000 120000 0 40000 80000 120000 0 40000 80000 120000
Cholesky Inversion (dpoinv) Cholesky Inversion (dpotri)

o
0 40000 80000 120000 O 40000 80000 120000
Matrix order (N)
Version: Tile sizes
N : 960 N : 3840
* Non-Recursive: 1920 = Recursive: 3840/1920/480 dynamic
Non-Recursive: 2560 -- Peak Performance

Figure 3: Performance comparison between different kernels and versions.
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Benchmarks - Heterogeneous Cholesky trace

Recursive

Non-Recursive

Time

Figure 4: Comparison of traces between Recursive (3840/1920/480) and Non-Recursive (1920) versions for a

Cholesky.
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Which task do we split - Heterogeneous case

e Summary:
o Automatic 4+ Generic = Granularity dynamically steered.
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Which task do we split - Heterogeneous case

e Summary:
o Automatic 4+ Generic = Granularity dynamically steered.
o Dense linear algebra problems:
e Accross non-recursive Chameleon: Improvements from 5 to 30 %.
e Accross state-of-the-arts versions: on-par results in a portable way.
e Advantages:
o Generic.
Automatic.
Requirements: Recursive implementations + Performance models.
At least same performance as non-recursive versions.

O O O

¢ Inconvenients:

Decisions taken by looking at past. Cf. call interval.
Opaque decision.

CPU usage can be increased.

Turning a global view into a decision with local constraints.
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A splitting example
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A splitting example

@&Izu&/—

Baseline scheduling:
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A splitting example

Potential split:

Baseline scheduling:

Exa-Soft, Saclay

Thomas Morin

20



A splitting example

Potential split:
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Baseline scheduling:

Potential scheduling:
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A splitting example

Potential split:
@ lrzia—

Baseline scheduling:

Potential scheduling:

U e e

time

Not interesting: longer than baseline.
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A splitting example

Potential split:
@ ézu&;—

Baseline scheduling:

time
Potential scheduling:
cpu1 [T
GPuo [T
time
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A splitting example

Baseline scheduling:

©) cpu o T

Potential scheduling:

cPu 1 [
@O0 o mmm

Potential split:

time

gpu-time increased, end-time decreased.
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A splitting example

Potential split:
@ lrzia—

Baseline scheduling:

Potential scheduling:

GPU 0

cPu1 I
cPuo I I
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A splitting example

Baseline scheduling:

® cpu o T

Potential scheduling:

GPU 0 e

Sy YORRN
cruo [T [
End-time increased, GPU time decreased.

@ 6&% Exa-Soft, Saclay Thomas Morin
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A splitting example

Potential split:

Baseline scheduling:
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A splitting example

Baseline scheduling:

©) cpu o [T

Potential split:

Idea: for each type of task, create potential interesting
splittings and schedulings:

e Decrease GPU time.

e Occupy CPU cores.
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A splitting example

Baseline scheduling:

©) cpu o [T

Potential split: Idea: for each type of task, create potential interesting
splittings and schedulings:

e Decrease GPU time.

Occupy CPU cores.

Record, for each scheduling:
Sequential GPU time.
Global finishing time.

Mean of CPU cores used.
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A new algorithm to improve previous limitations

e LP = global decision vs greedy = incremental decision with a global target.
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e Global target: when possible, splitting a task to occupy CPU cores and constraint
the scheduling.
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e Global target: when possible, splitting a task to occupy CPU cores and constraint

the scheduling.
o At start, for each task generation of "all" recursive versions and "all" schedulings.

o All interesting recursive versions and schedulings.
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A new algorithm to improve previous limitations

LP = global decision vs greedy = incremental decision with a global target.

Global target: when possible, splitting a task to occupy CPU cores and constraint

the scheduling.

At start, for each task generation of "all" recursive versions and "all" schedulings.
o All interesting recursive versions and schedulings.

When a task is about to be pushed, look at GPU end.

o If no task can be split with a part executed on CPU cores, push it to GPUs.
o Else, take the less accelerated task, and search for a recursive scheduling that

e Can finish before the GPUs.
e Occupy less CPU cores than the available CPUs.
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A new algorithm to improve previous limitations

LP = global decision vs greedy = incremental decision with a global target.

Global target: when possible, splitting a task to occupy CPU cores and constraint

the scheduling.

At start, for each task generation of "all" recursive versions and "all" schedulings.
o All interesting recursive versions and schedulings.

When a task is about to be pushed, look at GPU end.

o If no task can be split with a part executed on CPU cores, push it to GPUs.
o Else, take the less accelerated task, and search for a recursive scheduling that

e Can finish before the GPUs.
e Occupy less CPU cores than the available CPUs.

Warning: Splitting generates data transfers that should be taken into account.
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Benchmarks - Heterogeneous - Cholesky

Cholesky Factorization (dpotrf)
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Figure 5: Performance comparison between different versions for Cholesky Factorization with Greedy Algorithm.

g @ leeia— Exa-Soft, Saclay

120000

001V 2 + ANV 29

Thomas Morin

22



Benchmarks - Heterogeneous - Cholesky

Cholesky Factorization (dpotrf)
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Figure 5: Performance comparison between different versions for Cholesky Factorization with Greedy Algorithm.
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Benchmarks - Heterogeneous - Cholesky

Cholesky Factorization (dpotrf)
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Figure 5: Performance comparison between different versions for Cholesky Factorization with Greedy Algorithm.
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Benchmarks - Heterogeneous - LU without piv

General Matrix Factorization (dgetrf)
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Figure 6: Performance comparison between different versions for LU Factorization without piv with Greedy
Algorithm.
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Benchmarks - Heterogeneous - LU without piv

General Matrix Factorization (dgetrf)
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Figure 6: Performance comparison between different versions for LU Factorization without piv with Greedy
Algorithm.
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Benchmarks - Heterogeneous - LU without piv

General Matrix Factorization (dgetrf)
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* Non-Recursive: 1920 = Recursive P-Workers: 3840/1920/960 GASPP
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= Recursive: 3840/1920/480 GASPP

Figure 6: Performance comparison between different versions for LU Factorization without piv with Greedy
Algorithm.
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Benchmarks - Heterogeneous - All

Cholesky Factorization (dpotrf) LU Factorization (dgetrf) Cholesky Solve (dposv)
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Figure 7: Performance comparison between different kernels and versions with Greedy Algorithm.
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Benchmarks - Heterogeneous - POTRF on GPU

Cholesky Factorization (dpotrf) LU Factorization (dgetrf) Cholesky Solve (dposv)
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Figure 8: Performance comparison between different kernels and versions with Greedy Algorithm, having dpotrf
on GPU.
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Benchmarks - Heterogeneous - Cholesky - POTRF on GPU

Cholesky Factorization (dpotrf)
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Figure 9: Performance comparison between different versions for Cholesky Factorization with Greedy Algorithm,
having POTRF on GPU.
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Conclusion

e Recursive tasks:

o Insert subgraph at runtime.
o More dynamic DAG.

e Splitting task dynamically brings different questions:

o Which task sould we split.
o When do we choose to split.

e Distributed recursive tasks, with scheduling.

e Extend to more irregular applications.
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Distributed context

Shared data
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Distributed context

Shared data
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Distributed context

Shared data

Ago: 0
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Aop: 1
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Distributed context

e Auto-pruning is important to decrease runtime pressure.

e Communications submitted Just-In-Time, reducing pressure.
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Benchmarks - Homogeneous - LU nopiv

Figure 10: Performance comparison between different versions for LU nopiv.

® No prune: no pruning, all tasks inserted, StarPU remove not submit some.
e Manually prune: The app submits only the needed tasks.
e Recursive tasks MPI: All tasks are submitted, without pruning, but communications

are inserted at splitting.
@ @%eém's&m-tasks Node: The last quarterfofathe iterations are splitted on nddestdorin 31
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