EX
REPUBLIQUE
ANCAISE

Dynamic Task Graph Adaptatlon with

Recursive Tasks DN
Exa-Soft A
ruance N UEE TR _)
~ Nathalie Furmento, Abdou Guermouche, Gwen&l‘e
— Lucas, Thomas Morin, Samuel Thibault, Pierre“—\

André Wacrenier
September 2025

Exa-Soft, Saclay Thomas Morin

EX ’\ PROGRAMME
REPUBLIQUE FRANCE DE RECHERCHE
FRANCAISE

-

Introduction

Introduction - Context

Task-based Programming

o Motivations:

o Portable frameworks.
o Exploit complex architectures.

e Applications: Directed Acyclic Graph (DAG).

e Runtime systems: scheduling, data management, communications, ...

g @ &z/zéla/_ Exa-Soft, Saclay Thomas Morin

Introduction - Context

Task-based Programming

¢ Motivations:
o Portable frameworks. it ||
o Exploit complex architectures. ”

e Applications: Directed Acyclic Graph (DAG). V*

e Runtime systems: scheduling, data management, communications, ...

STF: Sequential Task Flow

e Dependencies:

o Automatically inferred.
o Order of submission.

submit (F, a:RW)

ZEZ) b) submit (G, a:R, b:RW)
’ submit (H, a:R, c:RW)
H(a, c)

wait_tasks_completion ()

g @ &z/z/a/_ Exa-Soft, Saclay Thomas Morin

Introduction - Limitations of the STF model

Submission

e Overhead: large number of non-ready tasks.
e Bottleneck: sequential insertion.

e Adaptability 7 static task graphs.

g @ &z/z/a/_ Exa-Soft, Saclay Thomas Morin

Introduction - Limitations of the STF model

Submission

e Overhead: large number of non-ready tasks.
e Bottleneck: sequential insertion.

e Adaptability 7 static task graphs.

= How to create more dynamic task-graphs ?

g @ &z/z/a/_ Exa-Soft, Saclay Thomas Morin

Introduction - Limitations of the STF model

Submission

e Overhead: large number of non-ready tasks.
e Bottleneck: sequential insertion.

e Adaptability 7 static task graphs.

= How to create more dynamic task-graphs ? =- Recursive tasks graphs !

g @ &zrzéla/_ Exa-Soft, Saclay Thomas Morin

Introduction - Limitations of the STF model

Submission

e Overhead: large number of non-ready tasks.
e Bottleneck: sequential insertion.

e Adaptability 7 static task graphs.

= How to create more dynamic task-graphs ? =- Recursive tasks graphs !

Granularity

o GPUs versus CPUs.

e Lack of parallelism versus Steady State.

= Steering granularity dynamically 7

g @ &z/z/a/_ Exa-Soft, Saclay Thomas Morin

Overview

e StarPU’s Recursive Tasks.

e Introduction of the Splitter component.
e The heterogeneous case:

o A first policy that relies on Linear Programming.
o Improving this policy with a greedy algorithm.

g @ &z/z"a/_ Exa-Soft, Saclay Thomas Morin

EX ’\ PROGRAMME
REPUBLIQUE FRANCE DE RECHERCHE
FRANCAISE

-

Recursive Tasks

Recursive Tasks in StarPU

@ @ &zm_ Exa-Soft, Saclay Thomas Morin

Recursive Tasks in StarPU

g @ &z’z"a,_ Exa-Soft, Saclay Thomas Morin

Recursive Tasks in StarPU

e Recursive task execution:

@ @ &zm_ Exa-Soft, Saclay Thomas Morin

Recursive Tasks in StarPU

e Recursive task execution:
o Remain regular task.

@ @ &z/z;’a,_ Exa-Soft, Saclay Thomas Morin

Recursive Tasks in StarPU

e Recursive task execution:

o Remain regular task.
o Insert a subgraph: split.

g @ &z/z"a/_ Exa-Soft, Saclay Thomas Morin

Recursive Tasks in StarPU

e Recursive task execution:

o Remain regular task.
o Insert a subgraph: split.

g @ &z/z;’a/_ Exa-Soft, Saclay Thomas Morin

Recursive Tasks in StarPU

e Recursive task execution:

o Remain regular task.
o Insert a subgraph: split.

g @ &z/z"a/_ Exa-Soft, Saclay Thomas Morin

Ex ’\ PROGRAMME
REPUBLIQUE FRANCE DE RECHERCHE
CAISE

-

Dynamic task graph adaptation N

Dynamic task graph adaptation : splitting tasks

When do we choose to split task?

Which task should we split?

g @ &z/zéla/_ Exa-Soft, Saclay Thomas Morin

Dynamic task graph adaptation : splitting tasks

When do we choose to split task?

Submission, execution, ...

Which task should we split?

g @ &z/zéla/_ Exa-Soft, Saclay Thomas Morin

Dynamic task graph adaptation : splitting tasks

When do we choose to split task?

Submission, execution, ...

Which task should we split?

Efficiency, Completion Time, Current Parallelism

g @ &z/zéla/_ Exa-Soft, Saclay Thomas Morin

When do we choose to split tasks

Task life path

app

submission

wait
dependencies

release

scheduler

Exa-Soft, Saclay

queue

data transferq
data fetching

execute

worker

Thomas Morin

When do we choose to split tasks

Adding the splitter

app

reg. task

wait release queue
X scheduler
dependencies
reg. task
rec. task X EE——
splitter
rec. task

Exa-Soft, Saclay

data transfex
data fetching

execute

worker

Thomas Morin

When do we choose to split tasks

Position of the splitter - trade-off

app

submission

wait reg. task
dependencies

=

]

S

g

Q2

splitter

worker

hedul queue data transfer execute
scheauler q
data fetching
X
w| | x
a| | @
- Il
sl rec. task
o)
= @
2

subDAG submission

Exa-Soft, Saclay

Thomas Morin

Ex ’\ PROGRAMME
REPUBLIQUE FRANCE DE RECHERCHE
FRANCAISE

Libeié

-

Heterogeneous A

Which task do we split - Heterogeneous case - Problematic

General example:

e Heterogeneous platform with 2 GPU Nvidia A100 and 2 AMD Zen3 CPU, each with
32 cores.

g @ &z/z;’a/_ Exa-Soft, Saclay Thomas Morin

11

Which task do we split - Heterogeneous case - Problematic

General example:

e Heterogeneous platform with 2 GPU Nvidia A100 and 2 AMD Zen3 CPU, each with
32 cores.

e Performing a tiled Cholesky factorization.

1 gpu
Kernel Tcore
GEMM 380

g @ &z/zé’a/_ Exa-Soft, Saclay Thomas Morin

Which task do we split - Heterogeneous case - Problematic

General example:

e Heterogeneous platform with 2 GPU Nvidia A100 and 2 AMD Zen3 CPU, each with
32 cores.

e Performing a tiled Cholesky factorization.

1 gpu
Kernel | 7 core 1 gpu Caccel)
StarPU 64 cores :
GEMM 380
9.4 (40.4)

g @ &z/zé’a/_ Exa-Soft, Saclay Thomas Morin

Which task do we split - Heterogeneous case - Problematic

General example:

e Heterogeneous platform with 2 GPU Nvidia A100 and 2 AMD Zen3 CPU, each with
32 cores.

e Performing a tiled Cholesky factorization.

1 gpu
Kernel
1 core 1
m (accel.)

GEMM 380

9.4 (40.4)
TRSM 307

6.5 (45.8)
SYRK 343

11.7 (29.3)

g @ &z/zé’a/_ Exa-Soft, Saclay Thomas Morin

Which task do we split - Heterogeneous case - Problematic

General example:

e Heterogeneous platform with 2 GPU Nvidia A100 and 2 AMD Zen3 CPU, each with
32 cores.

e Performing a tiled Cholesky factorization.

1 gpu
Kernel
1 core 1
% (accel.)

GEMM 380

9.4 (40.4)
TRSM 307

6.5 (45.8)
SYRK 343

11.7 (29.3)

e Q: Steady state = Which tasks, and how many should be divided ?

g @ &z/zé’a,_ Exa-Soft, Saclay Thomas Morin

Which task do we split - Heterogeneous case

e A task becomes ready = Recorded by the Splitter.

g @ leeia— Exa-Soft, Saclay

Thomas Morin

12

Which task do we split - Heterogeneous case

e A task becomes ready = Recorded by the Splitter.
e Each 50-task interval = A Linear Program is called.

g @ leeia— Exa-Soft, Saclay

Thomas Morin

12

Which task do we split - Heterogeneous case

e A task becomes ready = Recorded by the Splitter.
e Each 50-task interval = A Linear Program is called.

e Linear Program'’s aim: minimizing execution time by balancing load between the
PUs.

g @ &z/z;’a/_ Exa-Soft, Saclay Thomas Morin

12

Which task do we split - Heterogeneous case

A task becomes ready = Recorded by the Splitter.

Each 50-task interval = A Linear Program is called.

Linear Program’s aim: minimizing execution time by balancing load between the
PUs.

Task Splitting for PUs is required by ensuring minimal parallelism for each type of
PU.

g @ &z/zé’a/_ Exa-Soft, Saclay Thomas Morin

12

Which task do we split - Heterogeneous case

A task becomes ready = Recorded by the Splitter.

Each 50-task interval = A Linear Program is called.

Linear Program’s aim: minimizing execution time by balancing load between the
PUs.

Task Splitting for PUs is required by ensuring minimal parallelism for each type of
PU.

The LP provides ratio = used by the Splitter.

g @ &z/zé’a/_ Exa-Soft, Saclay Thomas Morin

12

Which task do we split - Heterogeneous case - Linear Program

Parameters
ot
7 t,l

R, RY
C

MinNy

Variables
exT

Nslt

t
Nel u

Minimize

=

Subject to

te T Set of task types, Number of task not split

of type t at level .

Task number splitting.

t t t p
Ne; +Ns; — nch_ - Ns'
of type u. Z 1u ! Z Pl 1=

u€eER Set of processing unit types, Number of PU
Maximum level of recursion. uER
ueER Minimal wanted number of tasks on each PU
of type u

Total execution time.
teT,I< L Number of split task of type
t and level /.
te T,I<L,ueER Number of task of type t

and level / executed on PU u

exT

&z/z"a/_ Exa-Soft, Saclay

p € par(

t)

No last —level splitting.

t
Ns -

Completion time when executing tasks.

t u u
E Ne/’u»Ext’/—R -exT

teT
0<i<L

Minimal number of tasks on PU type.

PIRE

teT
o<i<c

t
lu

—R"Y.MinN,

IN

teT,I<L

vteT

ueER

ueR

Thomas Morin

13

Benchmarks - Heterogeneous

The tests were run on PlaFRIM's
sirocco nodes:

2x 32-core AMD Zen3 EPYC 7513 @ 2.6 GHz
2x NVIDIA A100 (40GB)
512 GB (8 GB/core) (©3200 MHz)

Scheduler : Deque Model Data-Aware Ready
(DMDAR)

Exa-Soft, Saclay

Thomas Morin

14

Benchmarks - Heterogeneous

The tests were run on PlaFRIM's
sirocco nodes:

2x 32-core AMD Zen3 EPYC 7513 @ 2.6 GHz
2x NVIDIA A100 (40GB)
512 GB (8 GB/core) (©3200 MHz)

Scheduler : Deque Model Data-Aware Ready
(DMDAR)

Tile sizes choosen :
e 3840 : "big" : the most efficient.

e 480 : "small": parallelism, for CPU
cores.

e 1920, 2560 : "mid": trade-off.

Exa-Soft, Saclay Thomas Morin

14

Benchmarks - Heterogeneous - Cholesky

Cholesky Factorization (dpotrf)

TFlop/s
004V 2 + Y 29

0 40000 80000 120000

Matrix order (N)
Version: Tile sizes
Non-Recursive: 1920

Figure 1: Performance comparison between different versions for Cholesky Factorization.

g @ &z/z"a/_ Exa-Soft, Saclay Thomas Morin

15

Benchmarks - Heterogeneous - Cholesky

Cholesky Factorization (dpotrf)

001V 2 + WY 29

0 40000 . 80000 120000
Matrix order (N)

Version: Tile sizes

Non-Recursive: 1920
= Recursive: 3840/1920/480 dynamic

Figure 1: Performance comparison between different versions for Cholesky Factorization.

@ @ &z/z;’a,_ Exa-Soft, Saclay Thomas Morin

15

Benchmarks - Heterogeneous - Cholesky

Cholesky Factorization (dpotrf)

TFlop/s
004V 2 + QY 29

0 40000 X 80000 120000
Matrix order (N)

Version: Tile sizes

Non-Recursive: 1920
— Recursive: 3840/1920/480 dynamic
= Recursive: 3840/1920/480 static

Figure 1: Performance comparison between different versions for Cholesky Factorization.

@ @ &z/z;’a,_ Exa-Soft, Saclay Thomas Morin 15

Benchmarks - Heterogeneous - Cholesky

Cholesky Factorization (dpotrf)

00LV 2 + QWY 29

0 40000 80000 120000

Matrix order (N)
Version: Tile sizes
Non-Recursive: 1920 = Recursive: 3840/1920/480 static

= Parallel Workers: 3840
= Recursive: 3840/1920/480 dynamic

Figure 1: Performance comparison between different versions for Cholesky Factorization.

@ @ &zw Exa-Soft, Saclay Thomas Morin

15

Benchmarks - Heterogeneous - Cholesky

Cholesky Factorization (dpotrf)

0.

TFlop/s
00LV 2 + QWY 29

0

0 40000 80000 120000
Matrix order (N)

Version: Tile sizes

Non-Recursive: 1920 - - Parsec: 2560
= Parallel Workers: 3840 = Recursive: 3840/1920/480 dynamic
== Magma = Recursive: 3840/1920/480 static

Figure 1: Performance comparison between different versions for Cholesky Factorization.

@ @ &zm_ Exa-Soft, Saclay Thomas Morin

15

Benchmarks - Heterogeneous - without piv

General Matrix Factorization (dgetrf)

00LV 2 + QWY 29

0 40000 80000 120000

Matrix order (N)

Version: Tile sizes
Non-Recursive: 1920 - - Parsec: 2560
= Parallel Workers: 3840
== Magma

Figure 2: Performance comparison between different versions for LU Factorization without piv.

g @ &z/z"a/_ Exa-Soft, Saclay Thomas Morin

16

Benchmarks - Heterogeneous - without piv

General Matrix Factorization (dgetrf)

0.

TFlop/s
00LV 2 + QWY 29

0

0 40000 80000 120000
Matrix order (N)

Version: Tile sizes

Non-Recursive: 1920 - - Parsec: 2560
= Parallel Workers: 3840 = Recursive: 3840/1920/480 dynamic
== Magma = Recursive: 3840/1920/480 static

Figure 2: Performance comparison between different versions for LU Factorization without piv.

@ @ &zw Exa-Soft, Saclay Thomas Morin

16

Benchmarks - Heterogeneous - All

Cholesky Factorization (dpotrf) LU Factorization (dgetrf) Cholesky Solve (dposv)

4 o £ 4
0 40000 80000 120000 0 40000 80000 120000 0 40000 80000 120000
Cholesky Inversion (dpoinv) Cholesky Inversion (dpotri)

o
0 40000 80000 120000 O 40000 80000 120000
Matrix order (N)
Version: Tile sizes
N : 960 N : 3840
* Non-Recursive: 1920 = Recursive: 3840/1920/480 dynamic
Non-Recursive: 2560 -- Peak Performance

Figure 3: Performance comparison between different kernels and versions.

@ @ &z’u'a,- Exa-Soft, Saclay

Thomas Morin

17

Benchmarks - Heterogeneous Cholesky trace

Recursive

Non-Recursive

Time

Figure 4: Comparison of traces between Recursive (3840/1920/480) and Non-Recursive (1920) versions for a

Cholesky.

Exa-Soft, Saclay

Thomas Morin

18

Which task do we split - Heterogeneous case

e Summary:
o Automatic 4+ Generic = Granularity dynamically steered.

g @ leeia— Exa-Soft, Saclay

Thomas Morin

19

Which task do we split - Heterogeneous case

e Summary:

o Automatic 4+ Generic = Granularity dynamically steered.
o Dense linear algebra problems:
e Accross non-recursive Chameleon: Improvements from 5 to 30 %.

g @ leeia— Exa-Soft, Saclay

Thomas Morin

19

Which task do we split - Heterogeneous case

e Summary:

o Automatic 4+ Generic = Granularity dynamically steered.

o Dense linear algebra problems:
e Accross non-recursive Chameleon: Improvements from 5 to 30 %.
e Accross state-of-the-arts versions: on-par results in a portable way.

g @ leeia— Exa-Soft, Saclay

Thomas Morin

19

Which task do we split - Heterogeneous case

e Summary:

o Automatic 4+ Generic = Granularity dynamically steered.
o Dense linear algebra problems:
e Accross non-recursive Chameleon: Improvements from 5 to 30 %.

e Accross state-of-the-arts versions: on-par results in a portable way.

e Advantages:
o Generic.

g @ leeia— Exa-Soft, Saclay

Thomas Morin

19

Which task do we split - Heterogeneous case

e Summary:

o Automatic 4+ Generic = Granularity dynamically steered.
o Dense linear algebra problems:
e Accross non-recursive Chameleon: Improvements from 5 to 30 %.

e Accross state-of-the-arts versions: on-par results in a portable way.

e Advantages:
o Generic.
o Automatic.

g @ leeia— Exa-Soft, Saclay

Thomas Morin

19

Which task do we split - Heterogeneous case

e Summary:
o Automatic 4+ Generic = Granularity dynamically steered.
o Dense linear algebra problems:
e Accross non-recursive Chameleon: Improvements from 5 to 30 %.
e Accross state-of-the-arts versions: on-par results in a portable way.
e Advantages:
o Generic.
o Automatic.
o Requirements: Recursive implementations 4+ Performance models.

g @ leeia— Exa-Soft, Saclay

Thomas Morin

19

Which task do we split - Heterogeneous case

e Summary:
o Automatic 4+ Generic = Granularity dynamically steered.
o Dense linear algebra problems:
e Accross non-recursive Chameleon: Improvements from 5 to 30 %.
e Accross state-of-the-arts versions: on-par results in a portable way.
e Advantages:
o Generic.
o Automatic.
o Requirements: Recursive implementations 4+ Performance models.
o At least same performance as non-recursive versions.

g @ &z/z;’a/_ Exa-Soft, Saclay Thomas Morin

19

Which task do we split - Heterogeneous case

e Summary:
o Automatic 4+ Generic = Granularity dynamically steered.
o Dense linear algebra problems:
e Accross non-recursive Chameleon: Improvements from 5 to 30 %.
e Accross state-of-the-arts versions: on-par results in a portable way.
e Advantages:
o Generic.
o Automatic.
o Requirements: Recursive implementations 4+ Performance models.
o At least same performance as non-recursive versions.
e [nconvenients:
o Decisions taken by looking at past. Cf. call interval.

g @ &z/z;’a/_ Exa-Soft, Saclay Thomas Morin

19

Which task do we split - Heterogeneous case

e Summary:
o Automatic 4+ Generic = Granularity dynamically steered.
o Dense linear algebra problems:
e Accross non-recursive Chameleon: Improvements from 5 to 30 %.
e Accross state-of-the-arts versions: on-par results in a portable way.
e Advantages:
o Generic.
o Automatic.
o Requirements: Recursive implementations 4+ Performance models.
o At least same performance as non-recursive versions.
¢ Inconvenients:
o Decisions taken by looking at past. Cf. call interval.
o Opaque decision.

g @ &z/z;’a/_ Exa-Soft, Saclay Thomas Morin

19

Which task do we split - Heterogeneous case

e Summary:
o Automatic 4+ Generic = Granularity dynamically steered.
o Dense linear algebra problems:
e Accross non-recursive Chameleon: Improvements from 5 to 30 %.
e Accross state-of-the-arts versions: on-par results in a portable way.
e Advantages:
o Generic.
o Automatic.
o Requirements: Recursive implementations 4+ Performance models.
o At least same performance as non-recursive versions.
e [nconvenients:
o Decisions taken by looking at past. Cf. call interval.
o Opaque decision.
o CPU usage can be increased.

g @ &z/z;’a/_ Exa-Soft, Saclay Thomas Morin

19

Which task do we split - Heterogeneous case

e Summary:
o Automatic 4+ Generic = Granularity dynamically steered.
o Dense linear algebra problems:
e Accross non-recursive Chameleon: Improvements from 5 to 30 %.
e Accross state-of-the-arts versions: on-par results in a portable way.
e Advantages:
o Generic.
Automatic.
Requirements: Recursive implementations + Performance models.
At least same performance as non-recursive versions.

O O O

¢ Inconvenients:

Decisions taken by looking at past. Cf. call interval.
Opaque decision.

CPU usage can be increased.

Turning a global view into a decision with local constraints.

g @ &z/zé’a/_ Exa-Soft, Saclay Thomas Morin

O O O O

19

A splitting example

Exa-Soft, Saclay

Thomas Morin

20

A splitting example

@ézub/-

Exa-Soft, Saclay

Thomas Morin

20

A splitting example

@&Izu&/—

Baseline scheduling:

Exa-Soft, Saclay

Thomas Morin

20

A splitting example

Potential split:

Baseline scheduling:

Exa-Soft, Saclay

Thomas Morin

20

A splitting example

Potential split:

@&Izu&/—

Baseline scheduling:

Potential scheduling:

Exa-Soft, Saclay Thomas Morin

20

A splitting example

Potential split:
@ lrzia—

Baseline scheduling:

Potential scheduling:

U e e

time

Not interesting: longer than baseline.

Exa-Soft, Saclay Thomas Morin

20

A splitting example

Potential split:
@ ézu&;—

Baseline scheduling:

time
Potential scheduling:
cpu1 [T
GPuo [T
time
Exa-Soft, Saclay Thomas Morin 20

A splitting example

Baseline scheduling:

©) cpu o T

Potential scheduling:

cPu 1 [
@O0 o mmm

Potential split:

time

gpu-time increased, end-time decreased.

@ &Z?{&/— Exa-Soft, Saclay Thomas Morin

A splitting example

Potential split:
@ lrzia—

Baseline scheduling:

Potential scheduling:

GPU 0

cPu1 I
cPuo I I

Exa-Soft, Saclay

time

Thomas Morin

20

A splitting example

Baseline scheduling:

® cpu o T

Potential scheduling:

GPU 0 e

Sy YORRN
cruo [T [
End-time increased, GPU time decreased.

@ 6&% Exa-Soft, Saclay Thomas Morin

Potential split:

A splitting example

Potential split:

Baseline scheduling:

Exa-Soft, Saclay

Thomas Morin

20

A splitting example

Baseline scheduling:

©) cpu o [T

Potential split:

Idea: for each type of task, create potential interesting
splittings and schedulings:

e Decrease GPU time.

e Occupy CPU cores.

g @ &Z’Zé?/— Exa-Soft, Saclay Thomas Morin 20

A splitting example

Baseline scheduling:

©) cpu o [T

Potential split: Idea: for each type of task, create potential interesting
splittings and schedulings:

e Decrease GPU time.

Occupy CPU cores.

Record, for each scheduling:
Sequential GPU time.
Global finishing time.

Mean of CPU cores used.

@ @ &z’z"a/_ Exa-Soft, Saclay Thomas Morin 20

A new algorithm to improve previous limitations

e LP = global decision vs greedy = incremental decision with a global target.

g @ &z/z"a/_ Exa-Soft, Saclay Thomas Morin

21

A new algorithm to improve previous limitations

e LP = global decision vs greedy = incremental decision with a global target.

e Global target: when possible, splitting a task to occupy CPU cores and constraint
the scheduling.

g @ &z/z;’a/_ Exa-Soft, Saclay Thomas Morin

21

A new algorithm to improve previous limitations

e LP = global decision vs greedy = incremental decision with a global target.
e Global target: when possible, splitting a task to occupy CPU cores and constraint

the scheduling.
o At start, for each task generation of "all" recursive versions and "all" schedulings.

g @ &z/z;’a/_ Exa-Soft, Saclay Thomas Morin

21

A new algorithm to improve previous limitations

e LP = global decision vs greedy = incremental decision with a global target.
e Global target: when possible, splitting a task to occupy CPU cores and constraint

the scheduling.
o At start, for each task generation of "all" recursive versions and "all" schedulings.

o All interesting recursive versions and schedulings.

g @ &z/zé’a/_ Exa-Soft, Saclay Thomas Morin

21

A new algorithm to improve previous limitations

LP = global decision vs greedy = incremental decision with a global target.

Global target: when possible, splitting a task to occupy CPU cores and constraint

the scheduling.

At start, for each task generation of "all" recursive versions and "all" schedulings.
o All interesting recursive versions and schedulings.

When a task is about to be pushed, look at GPU end.

g @ &z/zé’a/_ Exa-Soft, Saclay Thomas Morin

21

A new algorithm to improve previous limitations

LP = global decision vs greedy = incremental decision with a global target.

Global target: when possible, splitting a task to occupy CPU cores and constraint
the scheduling.
At start, for each task generation of "all" recursive versions and "all" schedulings.
o All interesting recursive versions and schedulings.
When a task is about to be pushed, look at GPU end.
o If no task can be split with a part executed on CPU cores, push it to GPUs.

g @ &z/zé’a/_ Exa-Soft, Saclay Thomas Morin

21

A new algorithm to improve previous limitations

LP = global decision vs greedy = incremental decision with a global target.

Global target: when possible, splitting a task to occupy CPU cores and constraint

the scheduling.

At start, for each task generation of "all" recursive versions and "all" schedulings.
o All interesting recursive versions and schedulings.

When a task is about to be pushed, look at GPU end.

o If no task can be split with a part executed on CPU cores, push it to GPUs.
o Else, take the less accelerated task,

g @ &z/zé’a/_ Exa-Soft, Saclay Thomas Morin

21

A new algorithm to improve previous limitations

LP = global decision vs greedy = incremental decision with a global target.

Global target: when possible, splitting a task to occupy CPU cores and constraint

the scheduling.

At start, for each task generation of "all" recursive versions and "all" schedulings.
o All interesting recursive versions and schedulings.

When a task is about to be pushed, look at GPU end.

o If no task can be split with a part executed on CPU cores, push it to GPUs.
o Else, take the less accelerated task,

g @ &z/zé’a/_ Exa-Soft, Saclay Thomas Morin

21

A new algorithm to improve previous limitations

LP = global decision vs greedy = incremental decision with a global target.

Global target: when possible, splitting a task to occupy CPU cores and constraint

the scheduling.

At start, for each task generation of "all" recursive versions and "all" schedulings.
o All interesting recursive versions and schedulings.

When a task is about to be pushed, look at GPU end.

o If no task can be split with a part executed on CPU cores, push it to GPUs.
o Else, take the less accelerated task, and search for a recursive scheduling that

g @ &z/zé’a/_ Exa-Soft, Saclay Thomas Morin

21

A new algorithm to improve previous limitations

LP = global decision vs greedy = incremental decision with a global target.

Global target: when possible, splitting a task to occupy CPU cores and constraint

the scheduling.

At start, for each task generation of "all" recursive versions and "all" schedulings.
o All interesting recursive versions and schedulings.

When a task is about to be pushed, look at GPU end.

o If no task can be split with a part executed on CPU cores, push it to GPUs.
o Else, take the less accelerated task, and search for a recursive scheduling that

e Can finish before the GPUs.
e Occupy less CPU cores than the available CPUs.

g @ &z/zé’a/_ Exa-Soft, Saclay Thomas Morin

21

A new algorithm to improve previous limitations

LP = global decision vs greedy = incremental decision with a global target.

Global target: when possible, splitting a task to occupy CPU cores and constraint

the scheduling.

At start, for each task generation of "all" recursive versions and "all" schedulings.
o All interesting recursive versions and schedulings.

When a task is about to be pushed, look at GPU end.

o If no task can be split with a part executed on CPU cores, push it to GPUs.
o Else, take the less accelerated task, and search for a recursive scheduling that

e Can finish before the GPUs.
e Occupy less CPU cores than the available CPUs.

Warning: Splitting generates data transfers that should be taken into account.

g @ &z/zé’a,_ Exa-Soft, Saclay Thomas Morin

21

Benchmarks - Heterogeneous - Cholesky

Cholesky Factorization (dpotrf)

TFlop/s

0 40000 80000
Matrix order (N)
Version: Tile sizes
Non-Recursive: 1920
= Parallel Workers: 3840
=+ Parsec: 2560

Figure 5: Performance comparison between different versions for Cholesky Factorization with Greedy Algorithm.

g @ leeia— Exa-Soft, Saclay

120000

001V 2 + ANV 29

Thomas Morin

22

Benchmarks - Heterogeneous - Cholesky

Cholesky Factorization (dpotrf)

00LV 2 + QWY 29

0 40000 80000 120000

Matrix order (N)

Version: Tile sizes
Non-Recursive: 1920 = Recursive: 3840/1920/480 GASPP
= Parallel Workers: 3840
= Parsec: 2560

Figure 5: Performance comparison between different versions for Cholesky Factorization with Greedy Algorithm.

@ @ &z/z;’a,_ Exa-Soft, Saclay Thomas Morin

22

Benchmarks - Heterogeneous - Cholesky

Cholesky Factorization (dpotrf)

0.

TFlop/s
00LV 2 + QWY 29

0

0 40000 80000 120000
Matrix order (N)
Version: Tile sizes
Non-Recursive: 1920 = Recursive: 3840/1920/480 GASPP
= Parallel Workers: 3840 ~ Recursive P-Workers: 3840/1920/960 GASPP
- Parsec: 2560

Figure 5: Performance comparison between different versions for Cholesky Factorization with Greedy Algorithm.

@ @ &zw Exa-Soft, Saclay Thomas Morin

22

Benchmarks - Heterogeneous - LU without piv

General Matrix Factorization (dgetrf)

TFlop/s
00}V 2 + ANV 29

0 40000 80000 120000
Matrix order (N)

Version: Tile sizes

* Non-Recursive: 1920
= Parallel Workers: 3840

Figure 6: Performance comparison between different versions for LU Factorization without piv with Greedy
Algorithm.

g @ &z/z"a/_ Exa-Soft, Saclay Thomas Morin

23

Benchmarks - Heterogeneous - LU without piv

General Matrix Factorization (dgetrf)

00LV 2 + AWV 29

0 40000 80000 120000
Matrix order (N)

Version: Tile sizes

= Non-Recursive: 1920
= Parallel Workers: 3840
= Recursive: 3840/1920/480 GASPP

Figure 6: Performance comparison between different versions for LU Factorization without piv with Greedy
Algorithm.

g @ &z/z"a/_ Exa-Soft, Saclay Thomas Morin

23

Benchmarks - Heterogeneous - LU without piv

General Matrix Factorization (dgetrf)

TFlop/s
00lV 2 + AWV 29

0

0 40000 80000 120000
Matrix order (N)

Version: Tile sizes
* Non-Recursive: 1920 = Recursive P-Workers: 3840/1920/960 GASPP
-~ Parallel Workers: 3840

= Recursive: 3840/1920/480 GASPP

Figure 6: Performance comparison between different versions for LU Factorization without piv with Greedy
Algorithm.

@ @ &zw Exa-Soft, Saclay Thomas Morin 23

Benchmarks - Heterogeneous - All

Cholesky Factorization (dpotrf) LU Factorization (dgetrf) Cholesky Solve (dposv)
30
20
10-
» 0 o
E. 0 25000 50000 75000 100000 O 25000 50000 75000 100000 O 25000 50000 75000 10000
£ Cholesky Inversion (dpoinv) Cholesky Inversion (dpotri)

: o A
0 25000 50000 75000 100000 O 25000 50000 75000 100000
Matrix order (N)

Version: Tile sizes
Non-Recursive: 1920
* Non-Recursive: 3840
= Recursive: 3840/1920/480 dynamic

Figure 7: Performance comparison between different kernels and versions with Greedy Algorithm.

@ @ &z’z"a,_ Exa-Soft, Saclay Thomas Morin

24

Benchmarks - Heterogeneous - POTRF on GPU

Cholesky Factorization (dpotrf) LU Factorization (dgetrf) Cholesky Solve (dposv)

0 0
0 25000 50000 75000 100000 O 25000 50000 75000 100000 O 25000 50000 75000 10600
Cholesky Inversion (dpotri) Cholesky Inversion (dpoinv)

/ o !
0 25000 50000 75000 100000 O 25000 50000 75000 100000
Matrix order (N)

Version: Tile sizes
Non-Recursive: 1920 — Recursive: 3840/1920/480 GASPP
Non-Recursive: 3840 — Recursive: 3840/1920/480 LP

- - Peak Performance

Figure 8: Performance comparison between different kernels and versions with Greedy Algorithm, having dpotrf
on GPU.

@ @ &z’z"a,_ Exa-Soft, Saclay Thomas Morin

Benchmarks - Heterogeneous - Cholesky - POTRF on GPU

Cholesky Factorization (dpotrf)

00LV 2 + AWV 29

06100 50404 16405
Matrix order (N)

Version: Tile sizes

Non-Recursive: 3840 - - Dplasma: 2560

Parallel Workers: 3840 — Recursive: 3840/1920/480 GASPP

Magma Recursive P-Workers: 3840/1920/960 GASPP
- - Matris —+ Peak Performance

Figure 9: Performance comparison between different versions for Cholesky Factorization with Greedy Algorithm,
having POTRF on GPU.

g @ &z/z"a/_ Exa-Soft, Saclay Thomas Morin

EX ’\ PROGRAMME
REPUBLIQUE FRANCE DE RECHERCHE
FRANCAISE DT T —

Conclusion

cea CNrs

Conclusion

e Recursive tasks:

o Insert subgraph at runtime.
o More dynamic DAG.

e Splitting task dynamically brings different questions:

o Which task sould we split.
o When do we choose to split.

e Distributed recursive tasks, with scheduling.

e Extend to more irregular applications.

g @ &zrzéla/_ Exa-Soft, Saclay Thomas Morin

28

Distributed context

Shared data

A:0&1&2&3

Ap: 0 &1

Ago: 0

A 2&3

Agg: 2

A11: 3

Exa-Soft, Saclay

Thomas Morin

29

Distributed context

Shared data

A0&1&2&3

Ap: 0& 1

A 2&3

TRSM

Thomas Morin

29

Distributed context

Shared data

Ago: 0
Ag: 0& 1 <
Aop: 1

A 2&3

A0&1&2&3

>
w

Auto-pruning Node 0

: —>
g @ &zrz/a/_ Exa-Saft, 8aclay Thomas Morin

TRSM

Distributed context

e Auto-pruning is important to decrease runtime pressure.

e Communications submitted Just-In-Time, reducing pressure.

g @ &z/zéla/_ Exa-Soft, Saclay Thomas Morin

30

Benchmarks - Homogeneous - LU nopiv

Figure 10: Performance comparison between different versions for LU nopiv.

® No prune: no pruning, all tasks inserted, StarPU remove not submit some.
e Manually prune: The app submits only the needed tasks.
e Recursive tasks MPI: All tasks are submitted, without pruning, but communications

are inserted at splitting.
@ @%eém's&m-tasks Node: The last quarterfofathe iterations are splitted on nddestdorin 31

	Introduction
	Current STF limitations
	Outline

	Recursive Tasks
	Dynamic task graph adaptation
	When do we take decisions

	Heterogeneous
	Which task should be split - Heterogeneous
	Benchmark on heterogeneous context
	Heterogeneous context - a new algorithm

	Conclusion
	An introduction to distributed context

