
Dynamic Task Graph Adaptation with
Recursive Tasks
Exa-Soft

Nathalie Furmento, Abdou Guermouche, Gwenolé
Lucas, Thomas Morin, Samuel Thibault, Pierre-
André Wacrenier
September 2025

Exa-Soft, Saclay Thomas Morin 0



Introduction



Introduction - Context
Task-based Programming

• Motivations:
◦ Portable frameworks.
◦ Exploit complex architectures.

• Applications: Directed Acyclic Graph (DAG).
• Runtime systems: scheduling, data management, communications, . . .

STF: Sequential Task Flow
• Dependencies:

◦ Automatically inferred.
◦ Order of submission.

F(a)
G(a, b)
H(a, c)

submit (F, a:RW)
submit (G, a:R, b:RW)
submit (H, a:R, c:RW)
wait_tasks_completion ()

F

G

H

Exa-Soft, Saclay Thomas Morin 2



Introduction - Context
Task-based Programming

• Motivations:
◦ Portable frameworks.
◦ Exploit complex architectures.

• Applications: Directed Acyclic Graph (DAG).
• Runtime systems: scheduling, data management, communications, . . .

STF: Sequential Task Flow
• Dependencies:

◦ Automatically inferred.
◦ Order of submission.

F(a)
G(a, b)
H(a, c)

submit (F, a:RW)
submit (G, a:R, b:RW)
submit (H, a:R, c:RW)
wait_tasks_completion ()

F

G

H

Exa-Soft, Saclay Thomas Morin 2



Introduction - Limitations of the STF model

Submission
• Overhead: large number of non-ready tasks.
• Bottleneck: sequential insertion.
• Adaptability ? static task graphs.

⇒ How to create more dynamic task-graphs ? ⇒ Recursive tasks graphs !

Granularity

• GPUs versus CPUs.
• Lack of parallelism versus Steady State.

⇒ Steering granularity dynamically ?

Exa-Soft, Saclay Thomas Morin 3



Introduction - Limitations of the STF model

Submission
• Overhead: large number of non-ready tasks.
• Bottleneck: sequential insertion.
• Adaptability ? static task graphs.

⇒ How to create more dynamic task-graphs ?

⇒ Recursive tasks graphs !

Granularity

• GPUs versus CPUs.
• Lack of parallelism versus Steady State.

⇒ Steering granularity dynamically ?

Exa-Soft, Saclay Thomas Morin 3



Introduction - Limitations of the STF model

Submission
• Overhead: large number of non-ready tasks.
• Bottleneck: sequential insertion.
• Adaptability ? static task graphs.

⇒ How to create more dynamic task-graphs ? ⇒ Recursive tasks graphs !

Granularity

• GPUs versus CPUs.
• Lack of parallelism versus Steady State.

⇒ Steering granularity dynamically ?

Exa-Soft, Saclay Thomas Morin 3



Introduction - Limitations of the STF model

Submission
• Overhead: large number of non-ready tasks.
• Bottleneck: sequential insertion.
• Adaptability ? static task graphs.

⇒ How to create more dynamic task-graphs ? ⇒ Recursive tasks graphs !

Granularity

• GPUs versus CPUs.
• Lack of parallelism versus Steady State.

⇒ Steering granularity dynamically ?

Exa-Soft, Saclay Thomas Morin 3



Overview

• StarPU’s Recursive Tasks.
• Introduction of the Splitter component.
• The heterogeneous case:

◦ A first policy that relies on Linear Programming.
◦ Improving this policy with a greedy algorithm.

Exa-Soft, Saclay Thomas Morin 4



Recursive Tasks



Recursive Tasks in StarPU

• Recursive task execution:

◦ Remain regular task.
◦ Insert a subgraph: split.

T1

R1 R3

R2 R4

T2T1

R1 R3

R2 R4

T2T1

R1 R3

R2 R4

T2T1

R1 R3

R4

T2T1

R1 R3

T2T1

R1 R3

P U

T2

Exa-Soft, Saclay Thomas Morin 6



Recursive Tasks in StarPU

• Recursive task execution:

◦ Remain regular task.
◦ Insert a subgraph: split.

T1

R1 R3

R2 R4

T2

T1

R1 R3

R2 R4

T2T1

R1 R3

R2 R4

T2T1

R1 R3

R4

T2T1

R1 R3

T2T1

R1 R3

P U

T2

Exa-Soft, Saclay Thomas Morin 6



Recursive Tasks in StarPU

• Recursive task execution:

◦ Remain regular task.
◦ Insert a subgraph: split.

T1

R1 R3

R2 R4

T2

T1

R1 R3

R2 R4

T2

T1

R1 R3

R2 R4

T2T1

R1 R3

R4

T2T1

R1 R3

T2T1

R1 R3

P U

T2

Exa-Soft, Saclay Thomas Morin 6



Recursive Tasks in StarPU

• Recursive task execution:
◦ Remain regular task.

◦ Insert a subgraph: split.

T1

R1 R3

R2 R4

T2T1

R1 R3

R2 R4

T2

T1

R1 R3

R2 R4

T2

T1

R1 R3

R4

T2T1

R1 R3

T2T1

R1 R3

P U

T2

Exa-Soft, Saclay Thomas Morin 6



Recursive Tasks in StarPU

• Recursive task execution:
◦ Remain regular task.
◦ Insert a subgraph: split.

T1

R1 R3

R2 R4

T2T1

R1 R3

R2 R4

T2T1

R1 R3

R2 R4

T2

T1

R1 R3

R4

T2

T1

R1 R3

T2T1

R1 R3

P U

T2

Exa-Soft, Saclay Thomas Morin 6



Recursive Tasks in StarPU

• Recursive task execution:
◦ Remain regular task.
◦ Insert a subgraph: split.

T1

R1 R3

R2 R4

T2T1

R1 R3

R2 R4

T2T1

R1 R3

R2 R4

T2T1

R1 R3

R4

T2

T1

R1 R3

T2

T1

R1 R3

P U

T2

Exa-Soft, Saclay Thomas Morin 6



Recursive Tasks in StarPU

• Recursive task execution:
◦ Remain regular task.
◦ Insert a subgraph: split.

T1

R1 R3

R2 R4

T2T1

R1 R3

R2 R4

T2T1

R1 R3

R2 R4

T2T1

R1 R3

R4

T2T1

R1 R3

T2

T1

R1 R3

P U

T2

Exa-Soft, Saclay Thomas Morin 6



Dynamic task graph adaptation



Dynamic task graph adaptation : splitting tasks

When do we choose to split task?

Submission, execution, ...

Which task should we split?

Efficiency, Completion Time, Current Parallelism

Exa-Soft, Saclay Thomas Morin 8



Dynamic task graph adaptation : splitting tasks

When do we choose to split task?

Submission, execution, ...

Which task should we split?

Efficiency, Completion Time, Current Parallelism

Exa-Soft, Saclay Thomas Morin 8



Dynamic task graph adaptation : splitting tasks

When do we choose to split task?

Submission, execution, ...

Which task should we split?

Efficiency, Completion Time, Current Parallelism

Exa-Soft, Saclay Thomas Morin 8



When do we choose to split tasks

Task life path

app wait
dependencies scheduler

data transfer
data fetching worker

submission release queue execute

Exa-Soft, Saclay Thomas Morin 9



When do we choose to split tasks

Adding the splitter

app wait
dependencies scheduler

data transfer
data fetching worker

reg. task release queue execute

splitterrec. task

rec. task

reg. task

Exa-Soft, Saclay Thomas Morin 9



When do we choose to split tasks

Position of the splitter - trade-off

app wait
dependencies scheduler

data transfer
data fetching worker

submission reg. task queue execute

splitter
re

c.
ta

sk

re
c.

ta
sk

re
g.

ta
sk

subDAG submission

rec. task

Exa-Soft, Saclay Thomas Morin 9



Heterogeneous



Which task do we split - Heterogeneous case - Problematic

General example:
• Heterogeneous platform with 2 GPU Nvidia A100 and 2 AMD Zen3 CPU, each with

32 cores.

• Performing a tiled Cholesky factorization.
Kernel 1 gpu

1 core

1 gpu
StarPU 64 cores (accel.)

GEMM 380
9.4 (40.4)

TRSM 307
6.5 (45.8)

SYRK 343
11.7 (29.3)

• Q: Steady state ⇒ Which tasks, and how many should be divided ?

Exa-Soft, Saclay Thomas Morin 11



Which task do we split - Heterogeneous case - Problematic

General example:
• Heterogeneous platform with 2 GPU Nvidia A100 and 2 AMD Zen3 CPU, each with

32 cores.
• Performing a tiled Cholesky factorization.

Kernel 1 gpu
1 core

1 gpu
StarPU 64 cores (accel.)

GEMM 380

9.4 (40.4)
TRSM 307

6.5 (45.8)
SYRK 343

11.7 (29.3)
• Q: Steady state ⇒ Which tasks, and how many should be divided ?

Exa-Soft, Saclay Thomas Morin 11



Which task do we split - Heterogeneous case - Problematic

General example:
• Heterogeneous platform with 2 GPU Nvidia A100 and 2 AMD Zen3 CPU, each with

32 cores.
• Performing a tiled Cholesky factorization.

Kernel 1 gpu
1 core 1 gpu

StarPU 64 cores (accel.)
GEMM 380

9.4 (40.4)

TRSM 307
6.5 (45.8)

SYRK 343
11.7 (29.3)

• Q: Steady state ⇒ Which tasks, and how many should be divided ?

Exa-Soft, Saclay Thomas Morin 11



Which task do we split - Heterogeneous case - Problematic

General example:
• Heterogeneous platform with 2 GPU Nvidia A100 and 2 AMD Zen3 CPU, each with

32 cores.
• Performing a tiled Cholesky factorization.

Kernel 1 gpu
1 core 1 gpu

StarPU 64 cores (accel.)
GEMM 380

9.4 (40.4)
TRSM 307

6.5 (45.8)
SYRK 343

11.7 (29.3)

• Q: Steady state ⇒ Which tasks, and how many should be divided ?

Exa-Soft, Saclay Thomas Morin 11



Which task do we split - Heterogeneous case - Problematic

General example:
• Heterogeneous platform with 2 GPU Nvidia A100 and 2 AMD Zen3 CPU, each with

32 cores.
• Performing a tiled Cholesky factorization.

Kernel 1 gpu
1 core 1 gpu

StarPU 64 cores (accel.)
GEMM 380

9.4 (40.4)
TRSM 307

6.5 (45.8)
SYRK 343

11.7 (29.3)
• Q: Steady state ⇒ Which tasks, and how many should be divided ?

Exa-Soft, Saclay Thomas Morin 11



Which task do we split - Heterogeneous case

• A task becomes ready ⇒ Recorded by the Splitter.

• Each 50-task interval ⇒ A Linear Program is called.
• Linear Program’s aim: minimizing execution time by balancing load between the

PUs.
• Task Splitting for PUs is required by ensuring minimal parallelism for each type of

PU.
• The LP provides ratio ⇒ used by the Splitter.

Exa-Soft, Saclay Thomas Morin 12



Which task do we split - Heterogeneous case

• A task becomes ready ⇒ Recorded by the Splitter.
• Each 50-task interval ⇒ A Linear Program is called.

• Linear Program’s aim: minimizing execution time by balancing load between the
PUs.

• Task Splitting for PUs is required by ensuring minimal parallelism for each type of
PU.

• The LP provides ratio ⇒ used by the Splitter.

Exa-Soft, Saclay Thomas Morin 12



Which task do we split - Heterogeneous case

• A task becomes ready ⇒ Recorded by the Splitter.
• Each 50-task interval ⇒ A Linear Program is called.
• Linear Program’s aim: minimizing execution time by balancing load between the

PUs.

• Task Splitting for PUs is required by ensuring minimal parallelism for each type of
PU.

• The LP provides ratio ⇒ used by the Splitter.

Exa-Soft, Saclay Thomas Morin 12



Which task do we split - Heterogeneous case

• A task becomes ready ⇒ Recorded by the Splitter.
• Each 50-task interval ⇒ A Linear Program is called.
• Linear Program’s aim: minimizing execution time by balancing load between the

PUs.
• Task Splitting for PUs is required by ensuring minimal parallelism for each type of

PU.

• The LP provides ratio ⇒ used by the Splitter.

Exa-Soft, Saclay Thomas Morin 12



Which task do we split - Heterogeneous case

• A task becomes ready ⇒ Recorded by the Splitter.
• Each 50-task interval ⇒ A Linear Program is called.
• Linear Program’s aim: minimizing execution time by balancing load between the

PUs.
• Task Splitting for PUs is required by ensuring minimal parallelism for each type of

PU.
• The LP provides ratio ⇒ used by the Splitter.

Exa-Soft, Saclay Thomas Morin 12



Which task do we split - Heterogeneous case - Linear Program

Parameters
T , Ntot

t,l t ∈ T Set of task types, Number of task not split

of type t at level l.
R, Ru u ∈ R Set of processing unit types, Number of PU

of type u.

L Maximum level of recursion.

MinNu u ∈ R Minimal wanted number of tasks on each PU

of type u

Variables

exT Total execution time.

Nst
l t ∈ T , l < L Number of split task of type

t and level l.
Net

l,u t ∈ T , l ≤ L, u ∈ R Number of task of type t

and level l executed on PU u

Minimize

exT

Subject to

Task number splitting.∑
u∈R

Net
l,u+Nst

l −
∑

p ∈ par(t)

ncht
p,l ·Nsp

l−1 ≥ Ntot
t,l t ∈ T , l ≤ L

No last−level splitting.

Nst
L = 0 ∀ t ∈ T

Completion time when executing tasks.∑
t∈T

0≤l≤L

Net
l,u ·Exu

t,l −Ru ·exT ≤ 0 u ∈ R

Minimal number of tasks on PU type.∑
t∈T

0≤l≤L

Net
l,u−Ru ·MinNu ≤ 0 u ∈ R

Exa-Soft, Saclay Thomas Morin 13



Benchmarks - Heterogeneous

The tests were run on PlaFRIM’s
sirocco nodes:

• 2x 32-core AMD Zen3 EPYC 7513 @ 2.6 GHz
• 2x NVIDIA A100 (40GB)
• 512 GB (8 GB/core) (@3200 MHz)
• Scheduler : Deque Model Data-Aware Ready

(DMDAR)

Tile sizes choosen :
• 3840 : "big" : the most efficient.
• 480 : "small": parallelism, for CPU

cores.
• 1920, 2560 : "mid": trade-off.

Exa-Soft, Saclay Thomas Morin 14



Benchmarks - Heterogeneous

The tests were run on PlaFRIM’s
sirocco nodes:

• 2x 32-core AMD Zen3 EPYC 7513 @ 2.6 GHz
• 2x NVIDIA A100 (40GB)
• 512 GB (8 GB/core) (@3200 MHz)
• Scheduler : Deque Model Data-Aware Ready

(DMDAR)

Tile sizes choosen :
• 3840 : "big" : the most efficient.
• 480 : "small": parallelism, for CPU

cores.
• 1920, 2560 : "mid": trade-off.

Exa-Soft, Saclay Thomas Morin 14



Benchmarks - Heterogeneous - Cholesky

Figure 1: Performance comparison between different versions for Cholesky Factorization.

Exa-Soft, Saclay Thomas Morin 15



Benchmarks - Heterogeneous - Cholesky

Figure 1: Performance comparison between different versions for Cholesky Factorization.

Exa-Soft, Saclay Thomas Morin 15



Benchmarks - Heterogeneous - Cholesky

Figure 1: Performance comparison between different versions for Cholesky Factorization.

Exa-Soft, Saclay Thomas Morin 15



Benchmarks - Heterogeneous - Cholesky

Figure 1: Performance comparison between different versions for Cholesky Factorization.

Exa-Soft, Saclay Thomas Morin 15



Benchmarks - Heterogeneous - Cholesky

Figure 1: Performance comparison between different versions for Cholesky Factorization.

Exa-Soft, Saclay Thomas Morin 15



Benchmarks - Heterogeneous - without piv

Figure 2: Performance comparison between different versions for LU Factorization without piv.

Exa-Soft, Saclay Thomas Morin 16



Benchmarks - Heterogeneous - without piv

Figure 2: Performance comparison between different versions for LU Factorization without piv.

Exa-Soft, Saclay Thomas Morin 16



Benchmarks - Heterogeneous - All

Figure 3: Performance comparison between different kernels and versions.

Exa-Soft, Saclay Thomas Morin 17



Benchmarks - Heterogeneous Cholesky trace

Figure 4: Comparison of traces between Recursive (3840/1920/480) and Non-Recursive (1920) versions for a
Cholesky.

Exa-Soft, Saclay Thomas Morin 18



Which task do we split - Heterogeneous case

• Summary:
◦ Automatic + Generic ⇒ Granularity dynamically steered.

◦ Dense linear algebra problems:

• Accross non-recursive Chameleon: Improvements from 5 to 30 %.
• Accross state-of-the-arts versions: on-par results in a portable way.

• Advantages:

◦ Generic.
◦ Automatic.
◦ Requirements: Recursive implementations + Performance models.
◦ At least same performance as non-recursive versions.

• Inconvenients:

◦ Decisions taken by looking at past. Cf. call interval.
◦ Opaque decision.
◦ CPU usage can be increased.
◦ Turning a global view into a decision with local constraints.

Exa-Soft, Saclay Thomas Morin 19



Which task do we split - Heterogeneous case

• Summary:
◦ Automatic + Generic ⇒ Granularity dynamically steered.
◦ Dense linear algebra problems:

• Accross non-recursive Chameleon: Improvements from 5 to 30 %.

• Accross state-of-the-arts versions: on-par results in a portable way.
• Advantages:

◦ Generic.
◦ Automatic.
◦ Requirements: Recursive implementations + Performance models.
◦ At least same performance as non-recursive versions.

• Inconvenients:

◦ Decisions taken by looking at past. Cf. call interval.
◦ Opaque decision.
◦ CPU usage can be increased.
◦ Turning a global view into a decision with local constraints.

Exa-Soft, Saclay Thomas Morin 19



Which task do we split - Heterogeneous case

• Summary:
◦ Automatic + Generic ⇒ Granularity dynamically steered.
◦ Dense linear algebra problems:

• Accross non-recursive Chameleon: Improvements from 5 to 30 %.
• Accross state-of-the-arts versions: on-par results in a portable way.

• Advantages:

◦ Generic.
◦ Automatic.
◦ Requirements: Recursive implementations + Performance models.
◦ At least same performance as non-recursive versions.

• Inconvenients:

◦ Decisions taken by looking at past. Cf. call interval.
◦ Opaque decision.
◦ CPU usage can be increased.
◦ Turning a global view into a decision with local constraints.

Exa-Soft, Saclay Thomas Morin 19



Which task do we split - Heterogeneous case

• Summary:
◦ Automatic + Generic ⇒ Granularity dynamically steered.
◦ Dense linear algebra problems:

• Accross non-recursive Chameleon: Improvements from 5 to 30 %.
• Accross state-of-the-arts versions: on-par results in a portable way.

• Advantages:
◦ Generic.

◦ Automatic.
◦ Requirements: Recursive implementations + Performance models.
◦ At least same performance as non-recursive versions.

• Inconvenients:

◦ Decisions taken by looking at past. Cf. call interval.
◦ Opaque decision.
◦ CPU usage can be increased.
◦ Turning a global view into a decision with local constraints.

Exa-Soft, Saclay Thomas Morin 19



Which task do we split - Heterogeneous case

• Summary:
◦ Automatic + Generic ⇒ Granularity dynamically steered.
◦ Dense linear algebra problems:

• Accross non-recursive Chameleon: Improvements from 5 to 30 %.
• Accross state-of-the-arts versions: on-par results in a portable way.

• Advantages:
◦ Generic.
◦ Automatic.

◦ Requirements: Recursive implementations + Performance models.
◦ At least same performance as non-recursive versions.

• Inconvenients:

◦ Decisions taken by looking at past. Cf. call interval.
◦ Opaque decision.
◦ CPU usage can be increased.
◦ Turning a global view into a decision with local constraints.

Exa-Soft, Saclay Thomas Morin 19



Which task do we split - Heterogeneous case

• Summary:
◦ Automatic + Generic ⇒ Granularity dynamically steered.
◦ Dense linear algebra problems:

• Accross non-recursive Chameleon: Improvements from 5 to 30 %.
• Accross state-of-the-arts versions: on-par results in a portable way.

• Advantages:
◦ Generic.
◦ Automatic.
◦ Requirements: Recursive implementations + Performance models.

◦ At least same performance as non-recursive versions.
• Inconvenients:

◦ Decisions taken by looking at past. Cf. call interval.
◦ Opaque decision.
◦ CPU usage can be increased.
◦ Turning a global view into a decision with local constraints.

Exa-Soft, Saclay Thomas Morin 19



Which task do we split - Heterogeneous case

• Summary:
◦ Automatic + Generic ⇒ Granularity dynamically steered.
◦ Dense linear algebra problems:

• Accross non-recursive Chameleon: Improvements from 5 to 30 %.
• Accross state-of-the-arts versions: on-par results in a portable way.

• Advantages:
◦ Generic.
◦ Automatic.
◦ Requirements: Recursive implementations + Performance models.
◦ At least same performance as non-recursive versions.

• Inconvenients:

◦ Decisions taken by looking at past. Cf. call interval.
◦ Opaque decision.
◦ CPU usage can be increased.
◦ Turning a global view into a decision with local constraints.

Exa-Soft, Saclay Thomas Morin 19



Which task do we split - Heterogeneous case

• Summary:
◦ Automatic + Generic ⇒ Granularity dynamically steered.
◦ Dense linear algebra problems:

• Accross non-recursive Chameleon: Improvements from 5 to 30 %.
• Accross state-of-the-arts versions: on-par results in a portable way.

• Advantages:
◦ Generic.
◦ Automatic.
◦ Requirements: Recursive implementations + Performance models.
◦ At least same performance as non-recursive versions.

• Inconvenients:
◦ Decisions taken by looking at past. Cf. call interval.

◦ Opaque decision.
◦ CPU usage can be increased.
◦ Turning a global view into a decision with local constraints.

Exa-Soft, Saclay Thomas Morin 19



Which task do we split - Heterogeneous case

• Summary:
◦ Automatic + Generic ⇒ Granularity dynamically steered.
◦ Dense linear algebra problems:

• Accross non-recursive Chameleon: Improvements from 5 to 30 %.
• Accross state-of-the-arts versions: on-par results in a portable way.

• Advantages:
◦ Generic.
◦ Automatic.
◦ Requirements: Recursive implementations + Performance models.
◦ At least same performance as non-recursive versions.

• Inconvenients:
◦ Decisions taken by looking at past. Cf. call interval.
◦ Opaque decision.

◦ CPU usage can be increased.
◦ Turning a global view into a decision with local constraints.

Exa-Soft, Saclay Thomas Morin 19



Which task do we split - Heterogeneous case

• Summary:
◦ Automatic + Generic ⇒ Granularity dynamically steered.
◦ Dense linear algebra problems:

• Accross non-recursive Chameleon: Improvements from 5 to 30 %.
• Accross state-of-the-arts versions: on-par results in a portable way.

• Advantages:
◦ Generic.
◦ Automatic.
◦ Requirements: Recursive implementations + Performance models.
◦ At least same performance as non-recursive versions.

• Inconvenients:
◦ Decisions taken by looking at past. Cf. call interval.
◦ Opaque decision.
◦ CPU usage can be increased.

◦ Turning a global view into a decision with local constraints.

Exa-Soft, Saclay Thomas Morin 19



Which task do we split - Heterogeneous case

• Summary:
◦ Automatic + Generic ⇒ Granularity dynamically steered.
◦ Dense linear algebra problems:

• Accross non-recursive Chameleon: Improvements from 5 to 30 %.
• Accross state-of-the-arts versions: on-par results in a portable way.

• Advantages:
◦ Generic.
◦ Automatic.
◦ Requirements: Recursive implementations + Performance models.
◦ At least same performance as non-recursive versions.

• Inconvenients:
◦ Decisions taken by looking at past. Cf. call interval.
◦ Opaque decision.
◦ CPU usage can be increased.
◦ Turning a global view into a decision with local constraints.

Exa-Soft, Saclay Thomas Morin 19



A splitting example

T

Exa-Soft, Saclay Thomas Morin 20



A splitting example

T
time

GPU 0

Exa-Soft, Saclay Thomas Morin 20



A splitting example

T

Baseline scheduling:

time

GPU 0

Exa-Soft, Saclay Thomas Morin 20



A splitting example

T

Baseline scheduling:

time

GPU 0

Potential split:

T G T

T G T

Exa-Soft, Saclay Thomas Morin 20



A splitting example

T

Baseline scheduling:

time

GPU 0

Potential split:

T G T

T G T

Potential scheduling:

time

GPU 0

Exa-Soft, Saclay Thomas Morin 20



A splitting example

T

Baseline scheduling:

time

GPU 0

Potential split:

T G T

T G T

Potential scheduling:

time

GPU 0

Not interesting: longer than baseline.

Exa-Soft, Saclay Thomas Morin 20



A splitting example

T

Baseline scheduling:

time

GPU 0

Potential split:

T G T

T G T

Potential scheduling:

time

GPU 0
GPU 1

Exa-Soft, Saclay Thomas Morin 20



A splitting example

T

Baseline scheduling:

time

GPU 0

Potential split:

T G T

T G T

Potential scheduling:

time

GPU 0
GPU 1

gpu-time increased, end-time decreased.

Exa-Soft, Saclay Thomas Morin 20



A splitting example

T

Baseline scheduling:

time

GPU 0

Potential split:

T G T

T G T

Potential scheduling:

time

CPU 0
CPU 1
GPU 0

Exa-Soft, Saclay Thomas Morin 20



A splitting example

T

Baseline scheduling:

time

GPU 0

Potential split:

T G T

T G T

Potential scheduling:

time

CPU 0
CPU 1
GPU 0

End-time increased, GPU time decreased.
Exa-Soft, Saclay Thomas Morin 20



A splitting example

T

Baseline scheduling:

time

GPU 0

Potential split:

T G T

T

G G

G G

G G

G G

T

Exa-Soft, Saclay Thomas Morin 20



A splitting example

T

Baseline scheduling:

time

GPU 0

Potential split:

T G T

T

G G

G G

G G

G G

T
Idea: for each type of task, create potential interesting

splittings and schedulings:
• Decrease GPU time.
• Occupy CPU cores.

Exa-Soft, Saclay Thomas Morin 20



A splitting example

T

Baseline scheduling:

time

GPU 0

Potential split:

T G T

T

G G

G G

G G

G G

T

Idea: for each type of task, create potential interesting
splittings and schedulings:

• Decrease GPU time.
• Occupy CPU cores.

Record, for each scheduling:
• Sequential GPU time.
• Global finishing time.
• Mean of CPU cores used.

Exa-Soft, Saclay Thomas Morin 20



A new algorithm to improve previous limitations

• LP ⇒ global decision vs greedy ⇒ incremental decision with a global target.

• Global target: when possible, splitting a task to occupy CPU cores and constraint
the scheduling.

• At start, for each task generation of "all" recursive versions and "all" schedulings.

◦ All interesting recursive versions and schedulings.

• When a task is about to be pushed, look at GPU end.

◦ If no task can be split with a part executed on CPU cores, push it to GPUs.
◦ Else, take the less accelerated task,

• Can finish before the GPUs.
• Occupy less CPU cores than the available CPUs.

• Warning: Splitting generates data transfers that should be taken into account.

Exa-Soft, Saclay Thomas Morin 21



A new algorithm to improve previous limitations

• LP ⇒ global decision vs greedy ⇒ incremental decision with a global target.
• Global target: when possible, splitting a task to occupy CPU cores and constraint

the scheduling.

• At start, for each task generation of "all" recursive versions and "all" schedulings.

◦ All interesting recursive versions and schedulings.

• When a task is about to be pushed, look at GPU end.

◦ If no task can be split with a part executed on CPU cores, push it to GPUs.
◦ Else, take the less accelerated task,

• Can finish before the GPUs.
• Occupy less CPU cores than the available CPUs.

• Warning: Splitting generates data transfers that should be taken into account.

Exa-Soft, Saclay Thomas Morin 21



A new algorithm to improve previous limitations

• LP ⇒ global decision vs greedy ⇒ incremental decision with a global target.
• Global target: when possible, splitting a task to occupy CPU cores and constraint

the scheduling.
• At start, for each task generation of "all" recursive versions and "all" schedulings.

◦ All interesting recursive versions and schedulings.
• When a task is about to be pushed, look at GPU end.

◦ If no task can be split with a part executed on CPU cores, push it to GPUs.
◦ Else, take the less accelerated task,

• Can finish before the GPUs.
• Occupy less CPU cores than the available CPUs.

• Warning: Splitting generates data transfers that should be taken into account.

Exa-Soft, Saclay Thomas Morin 21



A new algorithm to improve previous limitations

• LP ⇒ global decision vs greedy ⇒ incremental decision with a global target.
• Global target: when possible, splitting a task to occupy CPU cores and constraint

the scheduling.
• At start, for each task generation of "all" recursive versions and "all" schedulings.

◦ All interesting recursive versions and schedulings.

• When a task is about to be pushed, look at GPU end.

◦ If no task can be split with a part executed on CPU cores, push it to GPUs.
◦ Else, take the less accelerated task,

• Can finish before the GPUs.
• Occupy less CPU cores than the available CPUs.

• Warning: Splitting generates data transfers that should be taken into account.

Exa-Soft, Saclay Thomas Morin 21



A new algorithm to improve previous limitations

• LP ⇒ global decision vs greedy ⇒ incremental decision with a global target.
• Global target: when possible, splitting a task to occupy CPU cores and constraint

the scheduling.
• At start, for each task generation of "all" recursive versions and "all" schedulings.

◦ All interesting recursive versions and schedulings.
• When a task is about to be pushed, look at GPU end.

◦ If no task can be split with a part executed on CPU cores, push it to GPUs.
◦ Else, take the less accelerated task,

• Can finish before the GPUs.
• Occupy less CPU cores than the available CPUs.

• Warning: Splitting generates data transfers that should be taken into account.

Exa-Soft, Saclay Thomas Morin 21



A new algorithm to improve previous limitations

• LP ⇒ global decision vs greedy ⇒ incremental decision with a global target.
• Global target: when possible, splitting a task to occupy CPU cores and constraint

the scheduling.
• At start, for each task generation of "all" recursive versions and "all" schedulings.

◦ All interesting recursive versions and schedulings.
• When a task is about to be pushed, look at GPU end.

◦ If no task can be split with a part executed on CPU cores, push it to GPUs.

◦ Else, take the less accelerated task,

• Can finish before the GPUs.
• Occupy less CPU cores than the available CPUs.

• Warning: Splitting generates data transfers that should be taken into account.

Exa-Soft, Saclay Thomas Morin 21



A new algorithm to improve previous limitations

• LP ⇒ global decision vs greedy ⇒ incremental decision with a global target.
• Global target: when possible, splitting a task to occupy CPU cores and constraint

the scheduling.
• At start, for each task generation of "all" recursive versions and "all" schedulings.

◦ All interesting recursive versions and schedulings.
• When a task is about to be pushed, look at GPU end.

◦ If no task can be split with a part executed on CPU cores, push it to GPUs.
◦ Else, take the less accelerated task,

• Can finish before the GPUs.
• Occupy less CPU cores than the available CPUs.

• Warning: Splitting generates data transfers that should be taken into account.

Exa-Soft, Saclay Thomas Morin 21



A new algorithm to improve previous limitations

• LP ⇒ global decision vs greedy ⇒ incremental decision with a global target.
• Global target: when possible, splitting a task to occupy CPU cores and constraint

the scheduling.
• At start, for each task generation of "all" recursive versions and "all" schedulings.

◦ All interesting recursive versions and schedulings.
• When a task is about to be pushed, look at GPU end.

◦ If no task can be split with a part executed on CPU cores, push it to GPUs.
◦ Else, take the less accelerated task,

• Can finish before the GPUs.
• Occupy less CPU cores than the available CPUs.

• Warning: Splitting generates data transfers that should be taken into account.

Exa-Soft, Saclay Thomas Morin 21



A new algorithm to improve previous limitations

• LP ⇒ global decision vs greedy ⇒ incremental decision with a global target.
• Global target: when possible, splitting a task to occupy CPU cores and constraint

the scheduling.
• At start, for each task generation of "all" recursive versions and "all" schedulings.

◦ All interesting recursive versions and schedulings.
• When a task is about to be pushed, look at GPU end.

◦ If no task can be split with a part executed on CPU cores, push it to GPUs.
◦ Else, take the less accelerated task, and search for a recursive scheduling that

• Can finish before the GPUs.
• Occupy less CPU cores than the available CPUs.

• Warning: Splitting generates data transfers that should be taken into account.

Exa-Soft, Saclay Thomas Morin 21



A new algorithm to improve previous limitations

• LP ⇒ global decision vs greedy ⇒ incremental decision with a global target.
• Global target: when possible, splitting a task to occupy CPU cores and constraint

the scheduling.
• At start, for each task generation of "all" recursive versions and "all" schedulings.

◦ All interesting recursive versions and schedulings.
• When a task is about to be pushed, look at GPU end.

◦ If no task can be split with a part executed on CPU cores, push it to GPUs.
◦ Else, take the less accelerated task, and search for a recursive scheduling that

• Can finish before the GPUs.
• Occupy less CPU cores than the available CPUs.

• Warning: Splitting generates data transfers that should be taken into account.

Exa-Soft, Saclay Thomas Morin 21



A new algorithm to improve previous limitations

• LP ⇒ global decision vs greedy ⇒ incremental decision with a global target.
• Global target: when possible, splitting a task to occupy CPU cores and constraint

the scheduling.
• At start, for each task generation of "all" recursive versions and "all" schedulings.

◦ All interesting recursive versions and schedulings.
• When a task is about to be pushed, look at GPU end.

◦ If no task can be split with a part executed on CPU cores, push it to GPUs.
◦ Else, take the less accelerated task, and search for a recursive scheduling that

• Can finish before the GPUs.
• Occupy less CPU cores than the available CPUs.

• Warning: Splitting generates data transfers that should be taken into account.

Exa-Soft, Saclay Thomas Morin 21



Benchmarks - Heterogeneous - Cholesky

Figure 5: Performance comparison between different versions for Cholesky Factorization with Greedy Algorithm.

Exa-Soft, Saclay Thomas Morin 22



Benchmarks - Heterogeneous - Cholesky

Figure 5: Performance comparison between different versions for Cholesky Factorization with Greedy Algorithm.

Exa-Soft, Saclay Thomas Morin 22



Benchmarks - Heterogeneous - Cholesky

Figure 5: Performance comparison between different versions for Cholesky Factorization with Greedy Algorithm.

Exa-Soft, Saclay Thomas Morin 22



Benchmarks - Heterogeneous - LU without piv

Figure 6: Performance comparison between different versions for LU Factorization without piv with Greedy
Algorithm.

Exa-Soft, Saclay Thomas Morin 23



Benchmarks - Heterogeneous - LU without piv

Figure 6: Performance comparison between different versions for LU Factorization without piv with Greedy
Algorithm.

Exa-Soft, Saclay Thomas Morin 23



Benchmarks - Heterogeneous - LU without piv

Figure 6: Performance comparison between different versions for LU Factorization without piv with Greedy
Algorithm.

Exa-Soft, Saclay Thomas Morin 23



Benchmarks - Heterogeneous - All

Figure 7: Performance comparison between different kernels and versions with Greedy Algorithm.

Exa-Soft, Saclay Thomas Morin 24



Benchmarks - Heterogeneous - POTRF on GPU

Cholesky Inversion (dpotri) Cholesky Inversion (dpoinv)

Cholesky Factorization (dpotrf) LU Factorization (dgetrf) Cholesky Solve (dposv)

0 25000 50000 75000 100000 0 25000 50000 75000 100000

0 25000 50000 75000 100000 0 25000 50000 75000 100000 0 25000 50000 75000 100000

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

Matrix order (N)

T
F

lo
p
/s

Version: Tile sizes

Non-Recursive: 1920
Non-Recursive: 3840
Peak Performance

Recursive: 3840/1920/480 GASPP
Recursive: 3840/1920/480 LP

Figure 8: Performance comparison between different kernels and versions with Greedy Algorithm, having dpotrf
on GPU.

Exa-Soft, Saclay Thomas Morin 25



Benchmarks - Heterogeneous - Cholesky - POTRF on GPU
Cholesky Factorization (dpotrf)

6
2

 A
M

D
 +

 2
 A

1
0

0

0e+00 5e+04 1e+05

0

10

20

30

Matrix order (N)

T
F

lo
p
/s

Version: Tile sizes

Non-Recursive: 3840
Parallel Workers: 3840
Magma
Matris

Dplasma: 2560
Recursive: 3840/1920/480 GASPP
Recursive P-Workers: 3840/1920/960 GASPP
Peak Performance

Figure 9: Performance comparison between different versions for Cholesky Factorization with Greedy Algorithm,
having POTRF on GPU.

Exa-Soft, Saclay Thomas Morin 26





Conclusion

Exa-Soft, Saclay Thomas Morin 27



Conclusion

• Recursive tasks:
◦ Insert subgraph at runtime.
◦ More dynamic DAG.

• Splitting task dynamically brings different questions:
◦ Which task sould we split.
◦ When do we choose to split.

Current Work
• Distributed recursive tasks, with scheduling.
• Extend to more irregular applications.

Exa-Soft, Saclay Thomas Morin 28



Distributed context

Shared data

A: 0 & 1 & 2 & 3

A0: 0 & 1

A1: 2 & 3

A00: 0

A01: 1

A10: 2

A11: 3

Exa-Soft, Saclay Thomas Morin 29



Distributed context

Shared data

A: 0 & 1 & 2 & 3

A0: 0 & 1

A1: 2 & 3

A00: 0

A01: 1

A10: 2

A11: 3

Auto-pruning

GETRF

TRSM

TRSM

GEMM

GETRF

Exa-Soft, Saclay Thomas Morin 29



Distributed context

Shared data

A: 0 & 1 & 2 & 3

A0: 0 & 1

A1: 2 & 3

A00: 0

A01: 1

A10: 2

A11: 3

Auto-pruning Node 0

GETRF

TRSM

TRSM : A1 GETRF: A1

Exa-Soft, Saclay Thomas Morin 29



Distributed context

Advantages

• Auto-pruning is important to decrease runtime pressure.
• Communications submitted Just-In-Time, reducing pressure.

Exa-Soft, Saclay Thomas Morin 30



Benchmarks - Homogeneous - LU nopiv

Figure 10: Performance comparison between different versions for LU nopiv.

• No prune: no pruning, all tasks inserted, StarPU remove not submit some.
• Manually prune: The app submits only the needed tasks.
• Recursive tasks MPI: All tasks are submitted, without pruning, but communications

are inserted at splitting.
• Recursive tasks Node: The last quarter of the iterations are splitted on node to

create parallelism.
• Recursive tasks MPI + Node: mix of above.

Exa-Soft, Saclay Thomas Morin 31


	Introduction
	Current STF limitations
	Outline

	Recursive Tasks
	Dynamic task graph adaptation
	When do we take decisions

	Heterogeneous
	Which task should be split - Heterogeneous
	Benchmark on heterogeneous context
	Heterogeneous context - a new algorithm

	Conclusion
	An introduction to distributed context


