

Liberté Égalité Fraternité

WP3 - Runtime Systems at Exascale

Samuel Thibault
University of Bordeaux

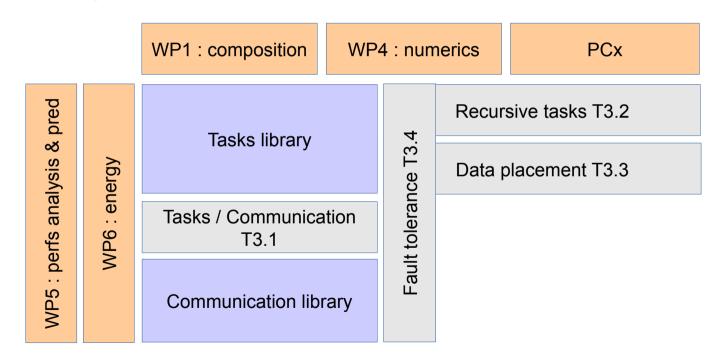
Exascale Challenges

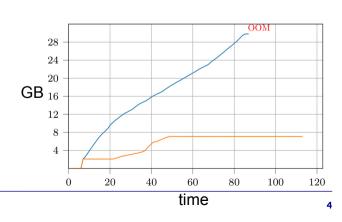
Node loss

User feedback

Inter-node MPI communications
Intra-node PCI communications
Memory/NIC/GPU
Task granularity
GPU/CPU

El Capitan




Inter-node MPI communications

Integrating communication task and communication asynchronism

- Tanguy Chatelain internship: Anticipatory notification of future communication → Almost-last-minute memory allocation+pinning
- → Effective allocation cache (a few GB) instead of permanent allocation (dozens of GB), without added latency
 - [https://inria.hal.science/hal-05147860]
- Will be pursued by Tristan Riehs, PhD student starting on oct 25:
 - Prioritize communications, track lost time, collectives

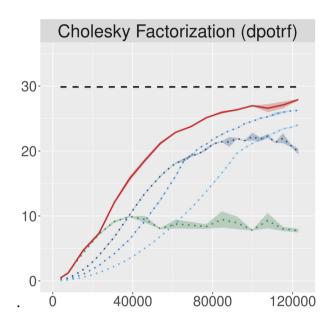
Trace analysis (with WP5)

PhD student to be recruited with WP5 for sep 26

Intra-node PCI communications

Data placement in heterogeneous memory levels

- Optimize placement along DRAM/HBM/NVDIMM/GPU
 - Choose memory type
 - Balance between NUMA nodes
 - Anticipate allocations (e.g. for GPUDirect MPI reception)
- Atoli Huppé, PhD student, started in oct 24

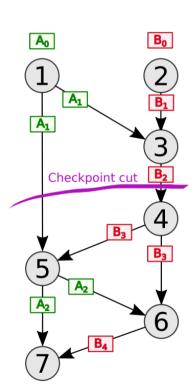

Task granularity

Recursive Partitioning Autotuning

- Automatic adaptation of task granularity (GPU/CPU) + CPU-parallel tasks
- Typical 10-30% performance increase over static granularity
 - [https://doi.org/10.1016/j.jpdc.2025.105157]
- · Thomas Morin, PhD student, will talk about it tomorrow morning
- Pierre Esterie, eng., will help integrate in Chameleon from WP4, and other demos
- Samuel Mendosa, will start PhD on oct 25
- Integration with WP1's Comet (WP1 postdoc) information from WP2's compiler (WP2 PhD)

Distributed execution: task mapping & pruning

Mapping at large tile size, and refine on nodes

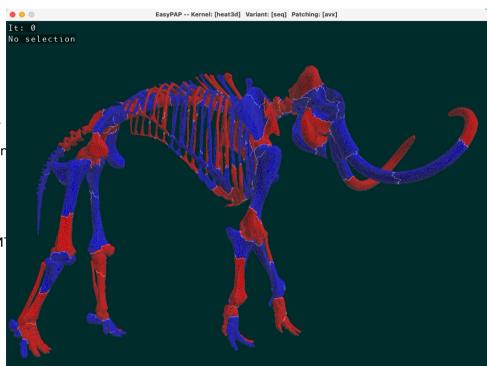


Fault tolerance for large-scale systems

Fault-tolerance for large-scale systems with tasks

- Nicolas Ducarton, eng., then PhD student started on apr 25, will briefly talk about it tomorrow morning
- Observe checkpoint/restart costs/opportunities
 - Low overhead of fully-asynchronous checkpointing (can be 0%!)
- Leverage state-of-the-art to optimize checkpoint frequency
- Integrate ABFT solutions with fault-tolerant task graph execution
- Eng. to be recruited to implement fault-tolerance MPI API in NewMadeleine

Explore multi-GPU parallelization strategies


- Mini-app from Airbus: noise propagation
 - Finite volumes on unstructured meshes (acoustic waves), C++
 - Explore Partitioning, edge coloring, halos, communication
 - Collaboration with NVIDIA

Interactive visualization and trace analysis tools

- See partitions, task affinities, ghost cells, cpu occupancy
- Training (Bordeaux, Paris Sorbonne, Telecom SudParis, IM Atlantique)

Bridge the gap with programming models

- Mini-app from Total: mini GEOS (C++)
 - Collaboration with Total and PC1 (Hélène Barucq)
 - Raja, Kokkos, StarPU

Integration in the Exa-SofT software stack

Software	Status	Integration in the software stack	Usable in other WP/PC ?
StarPU	Production	Tested on Chamelon Up to 4k cores	Yes
NewMadeleine	Production	Tested on Chamelon Up to 4k cores	Yes
Recursive tasks	Prototype	Tested on StarPU, Chamelon On 1 compute node	As prototype
Fault-tolerance	Prototype	Tested on StarPU On 4 compute nodes	No

24/09/2025

Conclusion

Towards a scalable runtime-system stack

- Integrate optimizations, from tasks to network
 - Anticipate communication, govern data placement/allocation
 - Control work granularity
- Cope with faults

Next main steps

- Pursue current work
- Integrate with trace analysis/visualization
- Integrate with more demonstrators

Liberté Égalité Fraternité

Retrouvez toutes nos actualités

in NumPEx