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WP2 Goals

• Make advanced code optimizations available to the HPC community
automatic parallelization, loop transformations, polyhedral optimizations, ...

• Using static or runtime optimization techniques
additional compilation passes, just-in-time analysis & optimization, ...

• Implement automatic code optimizations in mainstream HPC programming tools
Clang-LLVM, Kokkos, ...

• User-transparent code optimizations yielding:
◦ better computing resource usage
◦ better time performance
◦ less energy consumption
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WP2 Members

• WP2 leaders: Philippe Clauss (Inria Camus) & Thierry Gautier (Grenoble)

• Other permanent researcher: Christophe Alias (Inria Cash)

• PhD Students:
◦ Ugo Battiston (WP1+WP2, since October 2023)
◦ Raphaël Colin (since October 2023)
◦ Alec Sadler (since October 2023)

• Engineers:
◦ Erwan Auer (since January 2024)
◦ Pierre-Etienne Polet (since March 2024)
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Running PhDs

• Ugo Battiston (WP1+WP2, since October 2023)
Connecting Kokkos with the polyhedral model
Advisors: Philippe Clauss & Marc Pérache (CEA, WP1)

• Raphaël Colin (since October 2023)
Context-adapted multi-versioning of computation kernels
Advisors: Philippe Clauss & Thierry Gautier

• Alec Sadler (since October 2023)
Automatic Specialization of Polyhedral Programs on Sparse Structures
Advisor: Christophe Alias
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Connecting Kokkos with the polyhedral model

• Kokkos:
◦ a production level solution for writing modern C++ applications in a hardware

agnostic way (CPU, GPU)
◦ increasingly used by the HPC community (and by people involved in NumPEx)

• hardware agnostic way ⇒ what is the price to pay?

◦ Many default configuration parameter values are hidden to the user (e.g. loop tile sizes,
scheduling strategy, GPU block sizes, ...)
⇒ Many performance improvement opportunities are unavailable to the user

◦ The C++ template structure make the source code much more convoluted for compilers
⇒ Many performance improvement opportunities are unavailable to the compiler

◦ The kind of parallel code kernels that may be written with Kokkos are too restricted
⇒ Only rectangular loop iteration domains, e.g. no triangular domains
⇒ Only one loop nest per kernel, no kernel made of several loop nests

⇒ missed optimization opportunities (e.g. loop fusion)
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Connecting Kokkos with the polyhedral model

• Our solution
◦ Make advanced fully-automatic code optimizations available to Kokkos
◦ Enable users to write a wider range of kernels

• Opportunities
◦ Parallel kernels in Kokkos are perfect candidates for the polyhedral model
◦ Existing code optimizers may be connected/adapted to Kokkos: LLVM-Polly, Pluto, ...

• First WP2 deliverable at the end of October

• Attend Ugo Battiston’s presentation in next Session!
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Context-Adapted Multi-Versioning
of Computation Kernels



Context-adapted multi-versioning of computation kernels

• Example: 2mm-code (2 matrix multiplications in succession)

◦ AMD EPYC 7502 32-Core Processor: 1.52 sec. with 32 threads/cores without tiling

• best performing version with 32 threads/cores: 0.09 sec. with tile size 64 x 32 x 128
• best performing version with 25 threads/cores: 0.09 sec. with tile size 64 x 64 x 256
• same execution time with less threads/cores!
• best performing version with 16 threads/cores: 0.15 sec. with tile size 8 x 128 x 256
• best performing version with 8 threads/cores: 0.29 sec. with tile size 16 x 128 x 256
• depending on the number of threads/cores,

the best performing versions have different tile sizes!

◦ Intel 20-Core Ultra 7 265: 0.95 sec. with 20 threads/cores without tiling

• best performing version with 16 threads/cores: 0.09 sec. with tile size 32 x 256 x 128
• best performing version with 8 threads/cores: 0.13 sec. with tile size 16 x 32 x 32
• for a given number of threads/cores on different processors,

the best performing versions have different tile sizes!

◦ Performance portability is a fake!
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Context-adapted multi-versioning of computation kernels

• Code optimizations are sensitive to variations in the HW/SW execution context
◦ HW context: #nodes, #cores, vector capability, cache sizes, memory hierarchy, ...
◦ SW context: problem size, data input, function parameters, ...

• Huge distortions of performance when running a given code in various contexts

◦ The best performing code in a given context may be the worse in another context
◦ Different optimizing code transformations per context are required
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Context-adapted multi-versioning of computation kernels

• Our solution
◦ Seeking the best performing code versions for observed actual contexts, on-the-fly

• By testing different optimizing transformations
• By simulating real execution samples
• On separated nodes/cores

◦ While the main code is running
◦ Branching the main code on a better performing version

• when ready
• when the same context is met again

◦ Attend Raphaël Colin’s presentation tomorrow morning!

• Opportunities
◦ Apollo:

• A speculative parallelization platform based on Clang-LLVM and developed in the last
years by team Camus

• Currently extended to support runtime multi-versioning

◦ Attend Erwan Auer’s presentation in next Session!
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Conclusion

• Automatic Specialization of Polyhedral Programs on Sparse Structures:
Attend Alec Sadler’s presentation in next Session!

• Next main steps:
◦ Consolidate and generalize our results
◦ Make our software implementations the most robust and reliable
◦ Target GPU codes

• Longer term:
◦ Many more useful automatic code optimizations should be made available to the HPC

community

• WP2 staff
◦ 1 PhD to be hired in 2025/2026 (task 2.1)
◦ Erwan Auer’s engineer contract extended by 2 years (starting Jan. 2026)
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Thank You!
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