EX
REPUBLIQUE
ANCAISE

Compilation and Aut omatic\CQq\e
Optimization \
France\ BOSIE Work Package 2

Philippe Clauss
September 24, 2025 /|

University of Strasbourg & Inria Camus

WP2 Goals

e Make advanced code optimizations available to the HPC community
automatic parallelization, loop transformations, polyhedral optimizations, ...

e Using static or runtime optimization techniques
additional compilation passes, just-in-time analysis & optimization, ...

e Implement automatic code optimizations in mainstream HPC programming tools
Clang-LLVM, Kokkos, ...

e User-transparent code optimizations yielding:

o better computing resource usage
o better time performance
o less energy consumption

g @ &z/zé’a/_ Compilation and Automatic Code Optimization Philippe Clauss

WP2 Members

WP2 leaders: Philippe Clauss (Inria Camus) & Thierry Gautier (Grenoble)
Other permanent researcher: Christophe Alias (Inria Cash)
PhD Students:

o Ugo Battiston (WP1-+WP2, since October 2023)
o Raphaél Colin (since October 2023)
o Alec Sadler (since October 2023)

Engineers:

o Erwan Auer (since January 2024)
o Pierre-Etienne Polet (since March 2024)

g @ &z/z;’a/_ Compilation and Automatic Code Optimization Philippe Clauss

Running PhDs

e Ugo Battiston (WP14+WP2, since October 2023)
Connecting Kokkos with the polyhedral model
Advisors: Philippe Clauss & Marc Pérache (CEA, WP1)

e Raphaél Colin (since October 2023)
Context-adapted multi-versioning of computation kernels
Advisors: Philippe Clauss & Thierry Gautier

e Alec Sadler (since October 2023)
Automatic Specialization of Polyhedral Programs on Sparse Structures
Advisor: Christophe Alias

g @ &z/zé’a/_ Compilation and Automatic Code Optimization Philippe Clauss

Ex ’\ PROGRAMME
REPUBLIQUE FRANCE DE RECHERCHE
NGAISE

Connecting Kokkos with the Polyhedral Model N

Connecting Kokkos with the polyhedral model

Lkokkos
o Kokkos:

o a production level solution for writing modern C++ applications in a hardware
agnostic way (CPU, GPU)
o increasingly used by the HPC community (and by people involved in NumPEXx)

@ @ &zm_ Compilation and Automatic Code Optimization Philippe Clauss

Connecting Kokkos with the polyhedral model

Lkokkos
o Kokkos:

o a production level solution for writing modern C++ applications in a hardware
agnostic way (CPU, GPU)
o increasingly used by the HPC community (and by people involved in NumPEXx)
e hardware agnostic way = what is the price to pay?

@ @ &zz;’a,_ Compilation and Automatic Code Optimization Philippe Clauss

Connecting Kokkos with the polyhedral model

Lkokkos
o Kokkos:

o a production level solution for writing modern C++ applications in a hardware
agnostic way (CPU, GPU)
o increasingly used by the HPC community (and by people involved in NumPEXx)
e hardware agnostic way = what is the price to pay?
o Many default configuration parameter values are hidden to the user (e.g. loop tile sizes,
scheduling strategy, GPU block sizes, ...)
= Many performance improvement opportunities are unavailable to the user

g @ &z/z"a/_ Compilation and Automatic Code Optimization Philippe Clauss

Connecting Kokkos with the polyhedral model

Lkokkos
o Kokkos:

o a production level solution for writing modern C++ applications in a hardware
agnostic way (CPU, GPU)

o increasingly used by the HPC community (and by people involved in NumPEXx)

e hardware agnostic way = what is the price to pay?

o Many default configuration parameter values are hidden to the user (e.g. loop tile sizes,
scheduling strategy, GPU block sizes, ...)
= Many performance improvement opportunities are unavailable to the user

o The C++ template structure make the source code much more convoluted for compilers
= Many performance improvement opportunities are unavailable to the compiler

g @ &z/z"a/_ Compilation and Automatic Code Optimization Philippe Clauss

Connecting Kokkos with the polyhedral model

Lkokkos
o Kokkos:

o a production level solution for writing modern C++ applications in a hardware
agnostic way (CPU, GPU)

o increasingly used by the HPC community (and by people involved in NumPEXx)

e hardware agnostic way = what is the price to pay?

o Many default configuration parameter values are hidden to the user (e.g. loop tile sizes,
scheduling strategy, GPU block sizes, ...)
= Many performance improvement opportunities are unavailable to the user

o The C++ template structure make the source code much more convoluted for compilers
= Many performance improvement opportunities are unavailable to the compiler

o The kind of parallel code kernels that may be written with Kokkos are too restricted
= Only rectangular loop iteration domains, e.g. no triangular domains
= Only one loop nest per kernel, no kernel made of several loop nests

= missed optimization opportunities (e.g. loop fusion)

g @ &z/z"a/_ Compilation and Automatic Code Optimization Philippe Clauss

Connecting Kokkos with the polyhedral model

Lkokkos
e Qur solution

o Make advanced fully-automatic code optimizations available to Kokkos
o Enable users to write a wider range of kernels

e Opportunities

o Parallel kernels in Kokkos are perfect candidates for the polyhedral model
o Existing code optimizers may be connected/adapted to Kokkos: LLVM-Polly, Pluto, ...

e First WP2 deliverable at the end of October

g @ &z/z"a/_ Compilation and Automatic Code Optimization Philippe Clauss

Connecting Kokkos with the polyhedral model

Our solution

o Make advanced fully-automatic code optimizations available to Kokkos
o Enable users to write a wider range of kernels

Opportunities

o Parallel kernels in Kokkos are perfect candidates for the polyhedral model
o Existing code optimizers may be connected/adapted to Kokkos: LLVM-Polly, Pluto, ...

First WP2 deliverable at the end of October

Attend Ugo Battiston’s presentation in next Session!

g @ &z/z"a/_ Compilation and Automatic Code Optimization Philippe Clauss

EX ’\ PROGRAMME
REPUBLIQUE FRANCE DE RECHERCHE
FRANCAISE YT
Libeté

Context-Adapted Multi-Versioning W\
of Computation Kernels \\
N

Context-adapted multi-versioning of computation kernels

e Example: 2mm-code (2 matrix multiplications in succession)

g @ &z/z"a/_ Compilation and Automatic Code Optimization Philippe Clauss

Context-adapted multi-versioning of computation kernels

e Example: 2mm-code (2 matrix multiplications in succession)
o AMD EPYC 7502 32-Core Processor: 1.52 sec. with 32 threads/cores without tiling

g @ &z/z;’a/_ Compilation and Automatic Code Optimization Philippe Clauss

Context-adapted multi-versioning of computation kernels

e Example: 2mm-code (2 matrix multiplications in succession)
o AMD EPYC 7502 32-Core Processor: 1.52 sec. with 32 threads/cores without tiling
e best performing version with 32 threads/cores: 0.09 sec. with tile size 64 x 32 x 128

g @ &z/z;’a/_ Compilation and Automatic Code Optimization Philippe Clauss

Context-adapted multi-versioning of computation kernels

e Example: 2mm-code (2 matrix multiplications in succession)
o AMD EPYC 7502 32-Core Processor: 1.52 sec. with 32 threads/cores without tiling

e best performing version with 32 threads/cores: 0.09 sec. with tile size 64 x 32 x 128
e best performing version with 25 threads/cores: 0.09 sec. with tile size 64 x 64 x 256

g @ &z/z;’a/_ Compilation and Automatic Code Optimization Philippe Clauss

Context-adapted multi-versioning of computation kernels

e Example: 2mm-code (2 matrix multiplications in succession)
o AMD EPYC 7502 32-Core Processor: 1.52 sec. with 32 threads/cores without tiling

e best performing version with 32 threads/cores: 0.09 sec. with tile size 64 x 32 x 128
e best performing version with 25 threads/cores: 0.09 sec. with tile size 64 x 64 x 256
e same execution time with less threads/cores!

g @ &z/z;’a/_ Compilation and Automatic Code Optimization Philippe Clauss

Context-adapted multi-versioning of computation kernels

e Example: 2mm-code (2 matrix multiplications in succession)

o AMD EPYC 7502 32-Core Processor: 1.52 sec. with 32 threads/cores without tiling
best performing version with 32 threads/cores: 0.09 sec. with tile size 64 x 32 x 128
best performing version with 25 threads/cores: 0.09 sec. with tile size 64 x 64 x 256
same execution time with less threads/cores!
best performing version with 16 threads/cores: 0.15 sec. with tile size 8 x 128 x 256

g @ &z/zé’a/_ Compilation and Automatic Code Optimization Philippe Clauss

Context-adapted multi-versioning of computation kernels

e Example: 2mm-code (2 matrix multiplications in succession)
o AMD EPYC 7502 32-Core Processor: 1.52 sec. with 32 threads/cores without tiling

best performing version with 32 threads/cores: 0.09 sec. with tile size 64 x 32 x 128
best performing version with 25 threads/cores: 0.09 sec. with tile size 64 x 64 x 256
same execution time with less threads/cores!

best performing version with 16 threads/cores: 0.15 sec. with tile size 8 x 128 x 256
best performing version with 8 threads/cores: 0.29 sec. with tile size 16 x 128 x 256

g @ &z/zé’a/_ Compilation and Automatic Code Optimization Philippe Clauss

Context-adapted multi-versioning of computation kernels

e Example: 2mm-code (2 matrix multiplications in succession)

o AMD EPYC 7502 32-Core Processor: 1.52 sec. with 32 threads/cores without tiling
best performing version with 32 threads/cores: 0.09 sec. with tile size 64 x 32 x 128
best performing version with 25 threads/cores: 0.09 sec. with tile size 64 x 64 x 256
same execution time with less threads/cores!
best performing version with 16 threads/cores: 0.15 sec. with tile size 8 x 128 x 256
best performing version with 8 threads/cores: 0.29 sec. with tile size 16 x 128 x 256
depending on the number of threads/cores,
the best performing versions have different tile sizes!

g @ &z/zé’a/_ Compilation and Automatic Code Optimization Philippe Clauss

Context-adapted multi-versioning of computation kernels

e Example: 2mm-code (2 matrix multiplications in succession)

o AMD EPYC 7502 32-Core Processor: 1.52 sec. with 32 threads/cores without tiling
best performing version with 32 threads/cores: 0.09 sec. with tile size 64 x 32 x 128
best performing version with 25 threads/cores: 0.09 sec. with tile size 64 x 64 x 256
same execution time with less threads/cores!
best performing version with 16 threads/cores: 0.15 sec. with tile size 8 x 128 x 256
best performing version with 8 threads/cores: 0.29 sec. with tile size 16 x 128 x 256
depending on the number of threads/cores,
the best performing versions have different tile sizes!

o Intel 20-Core Ultra 7 265: 0.95 sec. with 20 threads/cores without tiling

g @ &z/zé’a,_ Compilation and Automatic Code Optimization Philippe Clauss

Context-adapted multi-versioning of computation kernels

e Example: 2mm-code (2 matrix multiplications in succession)

o AMD EPYC 7502 32-Core Processor: 1.52 sec. with 32 threads/cores without tiling
best performing version with 32 threads/cores: 0.09 sec. with tile size 64 x 32 x 128
best performing version with 25 threads/cores: 0.09 sec. with tile size 64 x 64 x 256
same execution time with less threads/cores!
best performing version with 16 threads/cores: 0.15 sec. with tile size 8 x 128 x 256
best performing version with 8 threads/cores: 0.29 sec. with tile size 16 x 128 x 256
depending on the number of threads/cores,
the best performing versions have different tile sizes!

o Intel 20-Core Ultra 7 265: 0.95 sec. with 20 threads/cores without tiling
e best performing version with 16 threads/cores: 0.09 sec. with tile size 32 x 256 x 128

g @ &z/zé’a,_ Compilation and Automatic Code Optimization Philippe Clauss

Context-adapted multi-versioning of computation kernels

e Example: 2mm-code (2 matrix multiplications in succession)

o AMD EPYC 7502 32-Core Processor: 1.52 sec. with 32 threads/cores without tiling
best performing version with 32 threads/cores: 0.09 sec. with tile size 64 x 32 x 128
best performing version with 25 threads/cores: 0.09 sec. with tile size 64 x 64 x 256
same execution time with less threads/cores!
best performing version with 16 threads/cores: 0.15 sec. with tile size 8 x 128 x 256
best performing version with 8 threads/cores: 0.29 sec. with tile size 16 x 128 x 256
depending on the number of threads/cores,
the best performing versions have different tile sizes!

o Intel 20-Core Ultra 7 265: 0.95 sec. with 20 threads/cores without tiling

e best performing version with 16 threads/cores: 0.09 sec. with tile size 32 x 256 x 128
e best performing version with 8 threads/cores: 0.13 sec. with tile size 16 x 32 x 32

g @ &z/zé’a,_ Compilation and Automatic Code Optimization Philippe Clauss

Context-adapted multi-versioning of computation kernels

e Example: 2mm-code (2 matrix multiplications in succession)

o AMD EPYC 7502 32-Core Processor: 1.52 sec. with 32 threads/cores without tiling
best performing version with 32 threads/cores: 0.09 sec. with tile size 64 x 32 x 128
best performing version with 25 threads/cores: 0.09 sec. with tile size 64 x 64 x 256
same execution time with less threads/cores!
best performing version with 16 threads/cores: 0.15 sec. with tile size 8 x 128 x 256
best performing version with 8 threads/cores: 0.29 sec. with tile size 16 x 128 x 256
depending on the number of threads/cores,
the best performing versions have different tile sizes!

o Intel 20-Core Ultra 7 265: 0.95 sec. with 20 threads/cores without tiling

e best performing version with 16 threads/cores: 0.09 sec. with tile size 32 x 256 x 128

e best performing version with 8 threads/cores: 0.13 sec. with tile size 16 x 32 x 32

e for a given number of threads/cores on different processors,

the best performing versions have different tile sizes!

g @ &z/zé’a,_ Compilation and Automatic Code Optimization Philippe Clauss

Context-adapted multi-versioning of computation kernels

e Example: 2mm-code (2 matrix multiplications in succession)

o AMD EPYC 7502 32-Core Processor: 1.52 sec. with 32 threads/cores without tiling
best performing version with 32 threads/cores: 0.09 sec. with tile size 64 x 32 x 128
best performing version with 25 threads/cores: 0.09 sec. with tile size 64 x 64 x 256
same execution time with less threads/cores!
best performing version with 16 threads/cores: 0.15 sec. with tile size 8 x 128 x 256
best performing version with 8 threads/cores: 0.29 sec. with tile size 16 x 128 x 256
depending on the number of threads/cores,
the best performing versions have different tile sizes!

o Intel 20-Core Ultra 7 265: 0.95 sec. with 20 threads/cores without tiling

e best performing version with 16 threads/cores: 0.09 sec. with tile size 32 x 256 x 128

e best performing version with 8 threads/cores: 0.13 sec. with tile size 16 x 32 x 32

e for a given number of threads/cores on different processors,

the best performing versions have different tile sizes!

o Performance portability is a fake!

@ @ &zrzé'a,_ Compilation and Automatic Code Optimization Philippe Clauss

Context-adapted multi-versioning of computation kernels

e Code optimizations are sensitive to variations in the HW/SW execution context

o HW context: #nodes, #cores, vector capability, cache sizes, memory hierarchy, ...
o SW context: problem size, data input, function parameters, ...

g @ &z/z;’a/_ Compilation and Automatic Code Optimization Philippe Clauss

Context-adapted multi-versioning of computation kernels

e Code optimizations are sensitive to variations in the HW/SW execution context

o HW context: #nodes, #cores, vector capability, cache sizes, memory hierarchy, ...
o SW context: problem size, data input, function parameters, ...

e Huge distortions of performance when running a given code in various contexts

g @ &z/z;’a/_ Compilation and Automatic Code Optimization Philippe Clauss

Context-adapted multi-versioning of computation kernels

e Code optimizations are sensitive to variations in the HW/SW execution context

o HW context: #nodes, #cores, vector capability, cache sizes, memory hierarchy, ...
o SW context: problem size, data input, function parameters, ...

e Huge distortions of performance when running a given code in various contexts
o The best performing code in a given context may be the worse in another context

g @ &z/z;’a/_ Compilation and Automatic Code Optimization Philippe Clauss

Context-adapted multi-versioning of computation kernels

e Code optimizations are sensitive to variations in the HW/SW execution context

o HW context: #nodes, #cores, vector capability, cache sizes, memory hierarchy, ...
o SW context: problem size, data input, function parameters, ...

e Huge distortions of performance when running a given code in various contexts

o The best performing code in a given context may be the worse in another context
o Different optimizing code transformations per context are required

g @ &z/z;’a/_ Compilation and Automatic Code Optimization Philippe Clauss

Context-adapted multi-versioning of computation kernels

e Our solution

o Seeking the best performing code versions for observed actual contexts, on-the-fly
e By testing different optimizing transformations
e By simulating real execution samples
e On separated nodes/cores

o While the main code is running

o Branching the main code on a better performing version
e when ready
e when the same context is met again

g @ &z/z;’a/_ Compilation and Automatic Code Optimization Philippe Clauss

10

Context-adapted multi-versioning of computation kernels

e Our solution

o Seeking the best performing code versions for observed actual contexts, on-the-fly
e By testing different optimizing transformations
e By simulating real execution samples
e On separated nodes/cores

o While the main code is running

o Branching the main code on a better performing version
e when ready
e when the same context is met again

o Attend Raphaél Colin’s presentation tomorrow morning!

g @ &z/z;’a/_ Compilation and Automatic Code Optimization Philippe Clauss

10

Context-adapted multi-versioning of computation kernels

e Our solution
o Seeking the best performing code versions for observed actual contexts, on-the-fly
e By testing different optimizing transformations
e By simulating real execution samples
e On separated nodes/cores
o While the main code is running
o Branching the main code on a better performing version
e when ready
e when the same context is met again ’ \)
o Attend Raphaél Colin’s presentation tomorrow morning! i :

e Opportunities - \GE ’
o Apollo: \ W /
e A speculative parallelization platform based on Clang-LLVM and developed in the last
years by team Camus
o Currently extended to support runtime multi-versioning

g @ &z/z"a/_ Compilation and Automatic Code Optimization Philippe Clauss

10

Context-adapted multi-versioning of computation kernels

e Our solution
o Seeking the best performing code versions for observed actual contexts, on-the-fly
e By testing different optimizing transformations
e By simulating real execution samples
e On separated nodes/cores
o While the main code is running
o Branching the main code on a better performing version
e when ready
e when the same context is met again ’ \)
o Attend Raphaél Colin’s presentation tomorrow morning! i :

e Opportunities - \GE ’
o Apollo: \ W /
e A speculative parallelization platform based on Clang-LLVM and developed in the last
years by team Camus
o Currently extended to support runtime multi-versioning

o Attend Erwan Auer’s presentation in next Session!

g &z/z;’a/_ Compilation and Automatic Code Optimization Philippe Clauss

10

EX ’\ PROGRAMME
REPUBLIQUE FRANCE DE RECHERCHE
FRANCAISE DT T —

Conclusion

Conclusion

Automatic Specialization of Polyhedral Programs on Sparse Structures:
Attend Alec Sadler’s presentation in next Session!
e Next main steps:

o Consolidate and generalize our results
o Make our software implementations the most robust and reliable
o Target GPU codes

Longer term:

o Many more useful automatic code optimizations should be made available to the HPC
community

WP2 staff

o 1 PhD to be hired in 2025/2026 (task 2.1)
o Erwan Auer's engineer contract extended by 2 years (starting Jan. 2026)

g @ &z/zé’a/_ Compilation and Automatic Code Optimization Philippe Clauss

12

EX ’\ PROGRAMME
REPUBLIQUE FRANCE DE RECHERCHE
FRANCAISE —_—

Liberté

Fgalité
Fraternité

Thank You!

	Connecting Kokkos with the Polyhedral Model
	Context-Adapted Multi-Versioning of Computation Kernels
	Conclusion
	Thank You!

