







#### Optimization and AI WP2 & WP5

Presented by Prof. El-Ghazali Talbi & Emmanuel Franck



#### Sommaire

- 1. Optimization for AI
  - 1. AI and ML: AutoML

#### 2. Optimization for DNN

- 1. Optimization problems
- 2. Al for optimization
- 3. Parallel algorithmic solutions

- 3. Optimization for LLM
  - 1. Optimization problems
  - 2. Al for optimization
  - 3. Parallel algorithmic solution

- 1. Scientific challenges involving both WP2 and WP5
- 2. Opportunities for the Numpex call HPC and AI.
  - Clusters IA









## 1. Optimization for Al



#### AutoML

Sous-titre

- Machine learning tasks
  - Supervised learning
  - Unsupervised learning
  - Feature selection
  - Reinforcement learning



### Machine Learning Pipeline







# 2. Optimization and deep neural networks (DNNs)



#### **Deep neural networks**

#### • Feed Forward

- CNN (Convolution Neural Networks)
- AE (Auto Encoders)
- Transformers (Attention)
- GNN (Graph Neural Networks)
- Generative Adversarial Networks (Game theory)

input layer

- Recurrent neural networks (RNN)
  - LSTM (Long Short-Term Memory networks)
  - GRU (Gated Recurrent Units)
  - LLM (Large Langage Models)
- Neuromorphic networks
  - Collaboration with PEPR IA (EMERGENCES project)



Neuron

Body





#### **Optimization Problems**

- Neural architectures search (NAS)
  - Search the optimal DNN topology (e.g., number of layers, types of operations, connections between operations)
  - Hyperparameters are supposed to be a priori fixed
- Hyperparameter optimization (HPO)
  - Requires an *a priori* definition of the DNN architecture
  - Optimize the hyperparameters of the DNN
  - Two types of hyperparameters
    - Operation hyperparameters: features associated to operations
    - Global hyperparameters: optimization features of DNN
- Joint optimization (NAS+HPO)
  - **1.** Global optimization: optimizing all levels at the same time
  - 2. Nested optimization: optimizing the different levels in a hierarchical way.
  - **3**. Sequential optimization: NAS problem is solved first. Then, the hyperparameters for the obtained final solution are optimized.

E-G. Talbi, Automated design of deep neural networks, ACM Computing Surveys, 2022.





#### **Characteristics of the Optimization Problems**

- Large-scale optimization problem
  - High number of decision variables.
- Mixed optimization problem
  - Continuous: learning rate, momentum, ...
  - Discrete ordinal (i.e., quantitative): size of the filter, stride in CNN pooling operations
  - Discrete categorical (i.e., qualitative): type of operations, training optimizer
- Variable-size design space
  - Search space varies dynamically as a function of some variables values
  - Decision variable is relevant only if another variable takes a certain value.
- Extremely expensive black-box objective function(s)
  - Training the whole DNN (e.g. loss function).
  - Might take several hours, days or even months
- Noisy objective function
- Multi-objective optimization problem
  - Various conflicting objectives

Ouertatani, H., Maxim, C., Niar, S., & Talbi, E. G. (2024, September). Accelerated NAS via pretrained ensembles and multi-fidelity Bayesian Optimization. Int. Conf. on Artificial Neural Networks ICANN'2024





#### **Multiple objectives**

- Energy consumption
  - Low-power mobile and embedded areas  $\rightarrow$  Energy consumption (i.e. power)
- Inference speed
  - Real-time applications (e.g. video analysis)
- Computational and memory cost
  - Number of floating-point operations (FLOPs), Memory usage
  - Can concern both training and inference
- Hardware cost
  - Hardware for training and/or inference
- Number of parameters
- Diversity
  - Ensemble models using diverse DNNs tends to achieve better generalization
  - Diversity measures the discrepancy between the output of a DNN and the outputs of other DNNs





#### **AI for Optimization**

- Bayesian optimization & Surrogate optimization
  - Multi-fidelity models
  - Coupling of surrogates, optimization and sampling
- Construction of surrogates (i.e. reduced models)
  - Deep neural networks
    - PINNs, ...
    - Opérateurs neuronaux pour EDP (Transformers, LLM, ...)
    - Composition de réseaux, ...
    - Problématique optimisation (hyperparametres, entrainemeent, ...) de ces grands réseaux
  - WP2 –WP5 (2 demi-thèses)
    - Une thèse dans chaque WP
    - Collaboration à travers les doctorants, un ingénieur, …?







#### **Optimization algorithms**

- A wide variety of algorithms have been used
  - Grid search
  - Monte Carlo Tree Search (MCST)
  - Reinforcement learning (RL)
  - Bayesian Optimization
  - METAHEURSTICS
    - Local-search based (eg. Gradient based)
    - Evolutionary algorithms
    - Swarm Intelligence

J. Keisler, E-G. Talbi, A framework for the optimization of deep neural networksarchitectures and hyperparameters , JMLR Journal of Machine Learning Research, 2024.





### **Parallel Optimization Algorithms**

- AutoDNN problems are more and more complex (Generative AI)
  - Dataset, network size
  - LLM: Billions of parameters
  - GPT-4 Trillion parameters
- Rapid development of hardware
  - CPU, GPU, FPGA, ASICS, ...
  - State-of-the-art DNNs required more than 2,000 GPU days.
- Parallel algorithm design

  - Neighborhood exploration
  - Parallel handling of the population of solutions
  - Parallel handling of the objective function
- Hardware-aware NAS
  - Configuration of hardware : GPUs, ...

LANGUAGE MODEL SIZES TO APR/2022 OR: WHILE YOU WERE EXPLODING









# 3. Optimization and Large Langage Models (LLMs)





#### **Optimization Problems**







#### **Optimization Problems**



N. Davouse, E-G. Talbi, LLM fine tuning using Bayesian optimization, OLA'2025 Optimization & Learning Conference





#### **Parallel Optimization Algorithms**

- Decomposition algorithms
  - Fractal decomposition: DIRECT, FRACTAL, SOO, ...
  - Massively parallel  $\rightarrow$  Towards Exascale
  - Costly
- Bayesian optimization
  - Efficient
  - Intrinsically sequential
- Complementarity between decomposition and Bayesian optimization



