

Exa-MA Call for one PhD funding

Exa-MA Co-Funded PhD Call (2025)

New Call for 2025

• **Open to**: External partners (public/private) proposing **one PhD** project.

• **Funding**: 50% Exa-MA, 50% external partner.

• Deadline: Friday, Jan 31, 2025 (5pm), PDF to *lucas.pernollet*@cea.fr.

• Decision: By Feb 21, 2025.

Key Selection Criteria

- 1. **Fit with Exa-MA** (research WPs, demonstrators, scientific goals).
- 2. **Relevance** & **non-overlap** with existing Exa-MA/NumPEx PhDs.

3. **Open Science** commitment (open-access publications, open-source software).

4. **Identified candidate** preferred (internships highly encouraged).

Exa-MA Co-Funded PhD Call (2025)

Application Details (One PDF)

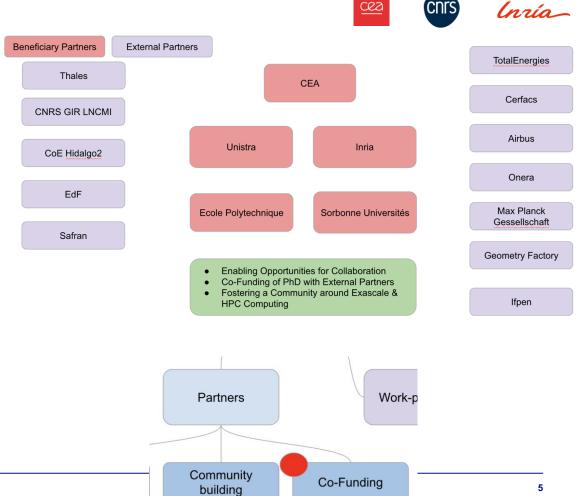
- Project Title, Keywords, Scientific Scope
- Work-Package Alignment (Exa-MA WPs), demonstrators, software plans
- Partners & License info,

Timeline

cv of candidate (if be call

Contact & Questions

- **Email**: *lucas.pernollet*@cea.fr
- **Institutions** eligible for Exa-MA side of funding:
 - Univ. Strasbourg | Inria | CEA
 | École Polytechnique | Sorbonne
 Université



External Partners

Fxa-MA co-funds 3 PhD thesis with

- via 2 calls •
 - Dec 2023: 3 projects submitted 0
 - board composed of people from inside and outside NumPEx.
 - 2 projects co-funded
 - Ecole Polytechnique / ONERA • High-order adaptive time coupling for multiphysics simulations
 - **INRIA Alpines/ IFPEN+ONERA** • Neural Linear Solvers and Preconditioners for **General Sparse Matrices**
- via existing half PhD funding
 - **INRIA Makutu/ TotalEnergies** 0

A modular HPC-oriented Library for Numerical PDE resolution: from building blocks to AI-Dirven scheme Generation

cea

Co-funding Opportunities & Half-PhD Funding

- Are there **specific research areas** (WP1–WP7) where you might co-fund a PhD or postdoc?
- What **challenges** do you foresee in setting up or managing such joint positions (e.g., administrative hurdles, timeline constraints)?
- How can we **maximize mutual benefits** (e.g., knowledge transfer, shared IP, extended collaborations) from a half-funded PhD?
- In what **timeframe** would you consider starting a co-funded project?

NumPEx Call for Projects

23/05/2024

The NumPEx call

- Total budget: 4MEuros/Up to 5 funded 4-years projects
- Single call with 3 different topics :
 - 1. AI4HPC HPC4AI
 - SW for the efficient training of large-scale science-driven AI models
 - Open call for AI for HPC
 - 2. Programming models for accelerated architectures
 - 3. Efficient workflows for scientific data processing, the case of SKA
- Details:
 - Deadline : 1st of April 2025
 - All information and scientific document:

https://anr.fr/PEPR-NumPEx-AAP-2024

AI for HPC/HPC for AI

- 1st topic: open call on AI for HPC
 - HPC codes and applications have an increasing complexity
 - Foster projects using AI to enhance the scalability and the efficiency of large-scale applications on exascale systems
 - Example of focus areas:
 - Al for code optimization (automated translatation, performance-specific optimization, performance bottleneck identification, test generation, etc)
 - Al for enhanced I/O (event tracking in massive data, anomaly detection, checkpoint optimisation, etc)
 - Al for HPC/HPDA workflows (AI-coupled HPC/HPDA workflows, automated configuration and workflow orchestration, ...)
 - ... but this is an open call, which is not limited to these topics
 - 1 4-years project with a budget between 500 and 800k€

AI for HPC/HPC for AI

- 2nd topic: call on HPC for Al
 - HPC for the high performance training of large-scale science-driven AI models
 - Improving the training efficiency of large AI models
 - Investigating training models beyond data parallelism: pipeline model parallelism, tensor parallelism, sequence and context paralellism, etc.
 - Asynchronous and decentralized optimizers
 - Improved communications
 - ...
 - Deliver software building blocks that can be adapted to different architectures
 - Validation with an application demonstrator
 - 1 4-years project with a budget between 500 and 900k€

Programming models for accelerated arch.

- Call on improved programming models for accelerated architectures
 - Axis 1: Code generation for accelerated arch. ensuring performance portability
 - Evaluation of a programming environment for designing application demonstrators capable of efficiently leveraging accelerated architectures
 - Code optimization for accelerators, particularly at the level of its intermediate representation within the context of kernels in the chosen prog. environment.
 - Scheduling of compute kernels on heterogeneous architectures
 - ...
 - Priviledged framework is Kokkos, but alternatives could be considered if properly justified
 - Axis 2: Evaluation of other programming models (AI-based frameworks, accelerators other than GPUs, etc)
 - Axis 3: Accelerating code porting for accelerated arch.
 - 1 to 2 4-years projects with a budget between 500 and 1,8M€ (total budget)

Efficient workflows for scientific data processing

CCCS Únría The Square Kilometer Array (SKA) & The Mind Blowing Big Data It Will

- Highly interoperable workflows for scientific data processing
 - Focus on SKA, allowing diverse exascale data processing and analysis workflows across a continuum of HPC/Cloud infrastructures
 - **Co-develop and deliver interoperable HPC/HPDA/AI workflows** accounting for the diverse processing pipelines (data logistics and ingestion, processing, archiving, visualisation, etc) ... **the goal is not to improving basic software components**.
 - Close collaboration with the French radio-astronomy community to build scientific workflows based on few diverse and relevant scientific use-cases., especially SKA-France, LOFAR/NenuFAR
 - Interaction with French national and regional computing centers and data centers
 - As a co-development activity, a strong interaction with Exa-AToW and Exa-DI projects is expected; the hired team is expected to be integrated in the NumPEx computation and data team (CDT).
 - 1 4-years project with a budget between 500 and 550k€

Guidelines

- Eligibility:
 - All French academic are elegible beneficiary partners
 - Industrial and international partners are welcome, but won't be beneficiary partners
 - NumPEx beneficiary partners are elegible
- Teams and project:
 - The goal is to build well-structured and coherent projects (not the aggregation of independent contributions)
 - Only few large projects will be funded
- Integration within NumPEx:
 - The goal of the AAP is to complement the NumPEx program, the integration with NumPEx is key
 - It is expected that the projects will be transverse to different NumPEx projects
 - Need to propose an integration plan:
 - with the existing NumPEx projects
 - NumPEx aims at delivering software components; integration within the NumPEx software production
 - with the NumPEx software/application co-design activity (Exa-DI project); propose application demonstrators, etc.

Further questions

- Don't hesitate to get in touch with:
 - the AAP contact point:

PEPR-NumPEx@agencerecherche.fr

numpex_aap@groupes.renater.fr

- the NumPEx project leaders
- More details about NumPEx: <u>https://numpex.org</u>
- Feel free to contact us if you plan to submit a proposal

NumPEx Call for Projects (AI, GPU/Accelerators, etc.)

- Do you have **proof-of-concept** ideas or ongoing work that could scale up under NumPEx call?
- Where do you see **immediate synergy** between your R&D pipeline and Exa-MA/NumPEx objectives (AI4HPC, HPC4AI, GPU acceleration, etc.)?
- Are there any **non-technical barriers** to applying for NumPEx calls (administrative, contractual, etc.) that we can address together?
- Would you be interested in joining forces to answer NumPEx call ?

Open Discussions

What we expect from you

Your Exascale Needs & Ambitions

- Which **applications or use cases** in your organization require exascale computing?
- **Challenges** you face.

Potential Collaboration Avenues

- **Co-funding projects**: Half-PhD funding, interns, short-term placements.
- **Software integration**: Adopting or contributing to Exa-MA/NumPEx toolchains.
- Training & workshops: Shared courses, hackathons, or custom training

Resource Constraints & Fairness

• **Limited bandwidth**: We need to manage expectations and workload.

Why Collaborate with Exa-MA/NumPEx?

- Access to HPC expertise & cutting-edge methods.
- Early insights into **exascale-ready** algorithms & software.
- **Community building**: Expand networks, join EU & national calls, co-author papers.

Co-funding Opportunities & Half-PhD Funding

- Are there **specific research areas** (WP1–WP7) where you might co-fund a PhD or postdoc?
- What **challenges** do you foresee in setting up or managing such joint positions (e.g., administrative hurdles, timeline constraints)?
- How can we **maximize mutual benefits** (e.g., knowledge transfer, shared IP, extended collaborations) from a half-funded PhD?
- In what **timeframe** would you consider starting a co-funded project?

NumPEx Call for Projects (AI, GPU/Accelerators, etc.)

- Do you have **proof-of-concept** ideas or ongoing work that could scale up under NumPEx call?
- Where do you see **immediate synergy** between your R&D pipeline and Exa-MA/NumPEx objectives (AI4HPC, HPC4AI, GPU acceleration, etc.)?
- Are there any **non-technical barriers** to applying for NumPEx calls (administrative, contractual, etc.) that we can address together?
- Would you be interested in joining forces to answer NumPEx call ?

Application Demonstrators & PC5 Working Groups

- Which application domains or use cases in your organization could benefit most from exascale-ready methods and algorithms?
- Have you identified **specific bottlenecks** that Exa-MA /NumPEx could help overcome?
- Which **PC5 working groups** or subtopics align best with your current or future R&D interests?
- How could we **streamline integration** of your use cases with our existing or planned demonstrators?

Software Development & Environments

- Which **open-source or proprietary software tools** are you already using for HPC or exascale?
- Would you contribute to the Software and Demonstrators Excel sheet ?
- Are you facing any **technical gaps** (e.g., portability, performance, advanced numerical methods) that Exa-MA/NumPEx software could address?
- How do you usually handle continuous integration (CI), testing, and benchmarking for HPC software?
- Could you **contribute code, expertise, or user feedback** to Exa-MA's software environment (e.g.,packaging, benchmarking...)?

Training and Training Working Group

Shared Workshops and Courses

- Are there specific HPC or exascale topics your teams would like to explore through short courses or internal workshops with Exa-MA/NumPEx?
- Could we co-develop tutorials, hackathons, or summer schools to upskill researchers and students?

Internships and Visiting Programs

• Are you interested in hosting interns, visiting PhD students, or postdocs from our consortium (or vice versa) to strengthen knowledge exchange?

Joint Curriculum Development

• Could we collaborate with university partners to **create or refine** specialized courses on HPC/exascale, machine learning, or advanced numerical methods?

Train-the-Trainer Initiatives

 Would your organization benefit from an "train-the-trainer" program, where Exa-MA/NumPEx equip your leads to train others internally?

Certification or Credentialing

• Is there value in developing some form of *certification* in HPC/Exascale best practices for staff, which we could cobrand or co-organize with external partners?

Learning Platforms & Resources

• How can we share existing/future training materials (recorded lectures, tutorials, code samples) so that your teams can learn at their own pace?

Continuing Professional Education

• Are there opportunities to collaborate on HPC short courses for professional engineers, data scientists, or domain experts within your organization?

Participation in EU Calls & Larger Collaborations

- Have you **identified upcoming EU calls** (e.g., Horizon Europe, EuroHPC) that overlap with Exa-MA/NumPEx topics?
- Are you looking for **partners or consortia** to join, especially in HPC, AI, or advanced computing proposals?
- What would be a **win-win scenario** for collaborating on an EU proposal (e.g., providing testbeds, software integration, domain expertise)?

Other Opportunities & Open Discussions

- What are **other collaborative models** (short-term consultancy, visiting scientists, hackathons, industry–academia secondments) we could explore?
- Which **domain challenges** (multiphysics, big-data assimilation, HPC resilience) do you think are under-addressed and could be tackled jointly?
- Are there **new trends** (quantum HPC, hybrid HPC+AI workflows, HPC in the cloud) where we might pool resources?

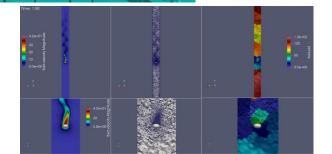
Closing Thoughts / Call to Action

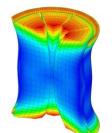
- **Contact Points**: Who in your organization can drive or champion these collaborations?
- Next Steps: What immediate actions or follow-up meetings should we schedule?
- Feedback Loop: Which communication channel (Slack, mailing list, monthly calls, workshops, yearly general assembly...) would you prefer to keep the conversation active?

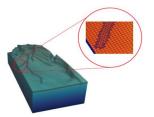
WP1: Discretization

P. Alliez (INRIA, Nice), H. Barucq (INRIA, Pau), I. Ramière (CEA, Cadarache),

WP1


Key Objectives

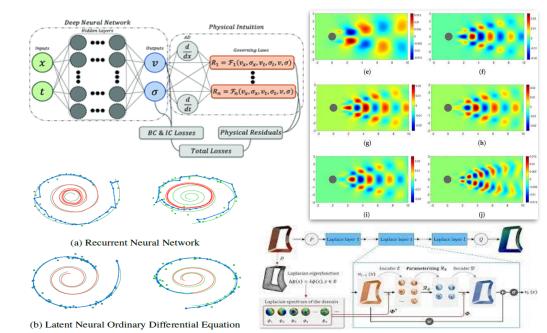

- Geometric and discrete domain representations
- Advanced numerical methods dedicated to physics-based simulation and parallel computing


Tasks

- Mesh generation
 - Large-scale, non-conforming
 - Unconditional robustness
 - Hexahedral block grids
- Adaptive Mesh Refinement
 - Unstructured grids
 - Cartesian or block grids
- Non-conforming finite elements
 - Treffz and HDG methods
- Error control in time and space
- Multiphysics coupling
 - Efficient and generic partitioned coupling
 - High-order time adaptive coupling
- Multiscale coupling

WP2: Model order, Surrogate, Scientific Machine Learning methods

E. Franck (INRIA, Strasbourg), S. Lanteri (INRIA, Nice)


WP2: order reduction and SciML

Key Objectives

- PINNs for high dimensional parametric PDE
- Neural operator and fast prediction

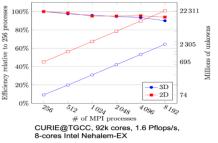
Tasks

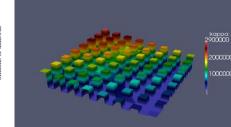
- Physic Informed Neural Networks
 - High dimensional parametric space and sampling
 - Domain decomposition
 - Training methods
- Neural operator
 - General and unstructured meshes
 - Complex and multiscale PDE
 - Coupling with forward and inverse solvers
- Reduced order modeling
 - (Non intrusive) Reduced Basis/Non linear compressive reduced basis
 - Auto-encoder/POD + NN hyper-reduction
 - Explicability for learning methods
 - Closure for kinetic equations
- Low/high fidelity models

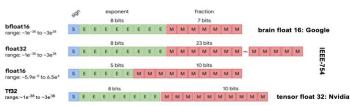
WP3: Solvers

V. Faucher (CEA, Cadarache), L. Giraud (INRIA, Bordeaux), F. Nataf (INRIA, Paris)

Key Objectives

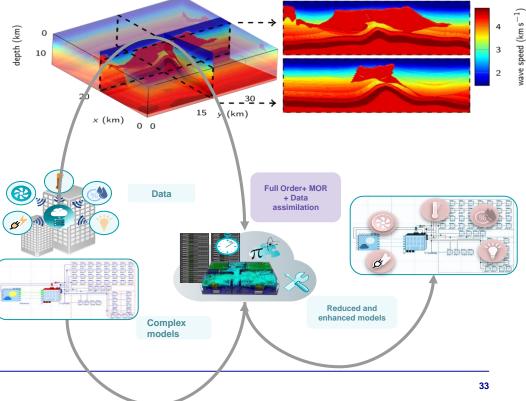

- Design novel generic scalable numerical algorithms Enable multi-precision for prescribed accuracy Leveraging communication avoiding/hiding, mixed arithmetic and data compression


Tasks


- Robust and scalable solvers
 - Adaptive precision (link with PC2), auto tuning 0 tools
 - Multi-level Domain decomposition with provable 0 efficiencv
 - Resiliency 0
- Scalable coupled physics solvers
- Open source libraries: HPDDM, Composyx, MEDCoupling, PROMISE, use cases via WP7 and interactions with PC2 Exa-Soft

WP4: Inverse Problems and Data Assimilation

M. Asch (UNISTRA, Amiens), H. Barucq (INRIA, Pau), A. Vidard (INRIA, Grenoble)


WP4: Inverse Problems and Data Assimilation

Key Objectives

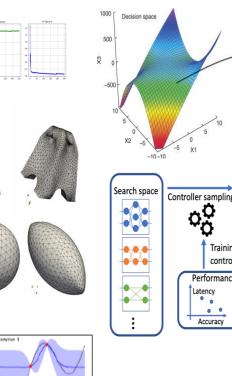
- Improve deterministic inversion methods
- Design new stochastic methods for inverse problems
- Improve observation strategies
- Implement multi-fidelity schedules at exascale

Tasks

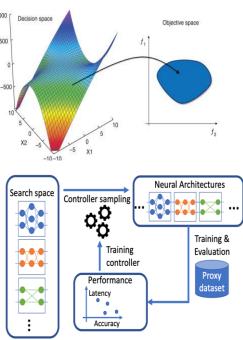
- Deterministic methods
- Stochastic methods
- Observations
- Multifidelity: modelling and inverse problems

WP5: Optimization

El-Ghazali Talbi(INRIA,Lille)


WP5: Optimization

Key Objectives


- Solving big optimization problems (decision variables, many-objectives, expensive objectives, big data) using exascale decomposition
- Inverse, continuous, discrete and mixed optimization problems
- Exact, heuristic and data driven optimization algorithms

Tasks

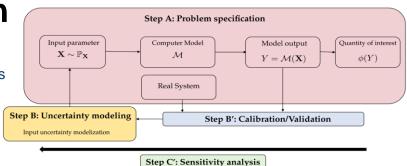
- Exascale combinatorial and continuous optimization
 - Exact optimization (Branch and bound, tree search) 0
 - Heuristic optimization (Computational intelligence) 0
- Exascale surrogate-based optimization
 - Multi-fidelity models 0
 - Coupling of surrogates, optimization and sampling 0
- Exascale shape optimization
 - Involving multiphysics models 0
- Exascale optimization for AutoML (Automated design of deep NN)

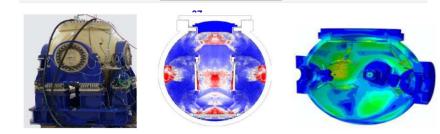
run function OP Production Training data Infilled samal Cez

nnía

WP6: Uncertainty Quantification

C. Gauchy(CEA, Saclay), J. Garnier(EP)


WP6: Uncertainty Quantification


Key Objectives

- Uncertainty Quantification for multi-physics and/or multi-scale problems
- Uncertainty propagation, sensitivity analysis, robust inversion

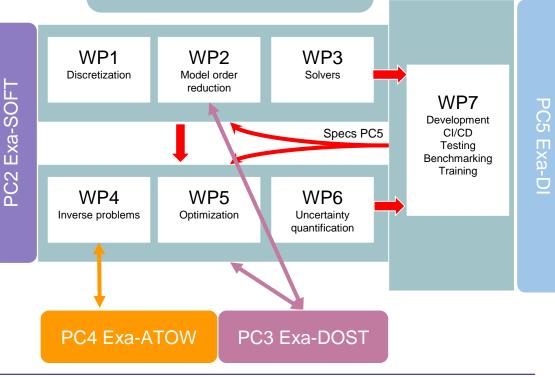
Tasks

- Kernel-based sensitivity analysis for high-dimensional data
- UQ in a PDE solving framework
 - Propagation of uncertainties on the initial conditions
 - UQ on meshes for exascale applications
 - Stochastic spectral methods
- Surrogate modeling for UQ
 - UQ for surrogate models under physical constraints
 - Tractability of Bayesian approaches for Gaussian Process Regression with high-dimensional inputs
 - Metamodels for nested, chained and coupled codes
- Acceleration of the bricks of the UQ process steps by leveraging exascale calculations

WP7: Software

L. Grospellier(CEA, Bruyères le Chatel), C. Prud'homme(UNISTRA)

WP7 Software


A transverse workpackage

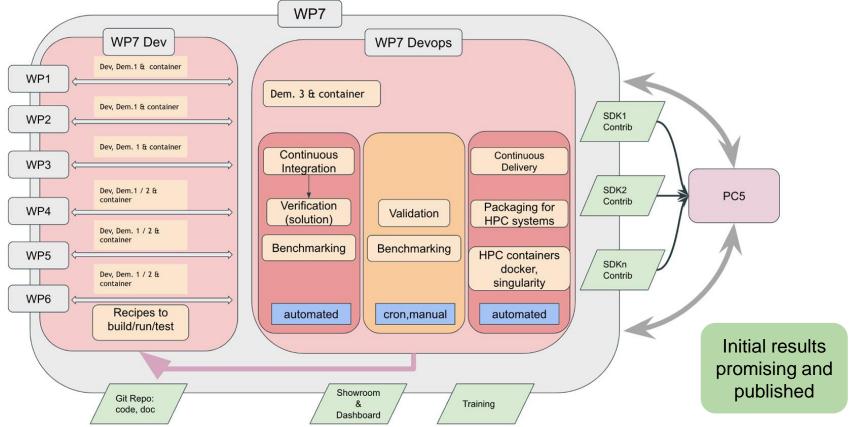
Developing Software

- Contribute to development locally or on WP topics
- Port to pre-exascale/exascale supercomputers
- Test including benchmarking to verify exascale capabilities and handling of identified challenges from simple to advanced software
- Deliver software packages in the framework proposed by ExaDIP in terms of CI/CD;
- Coordinating and contributing co-design activities within Exa-MA with ExaDIP, Contribute Software Develop Kit
- Enabling a showroom of Exa-MA results
- Building training material from the results of Exa-MAa
- Interaction with all other WPs + PC2, PC3, PC4, PC5

PC1Exa-MA

Methods and Algorithms for Exascale

23/05/2024


CNrs


Innía_

cea

