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Characterizing patterns in HPC simulations using AI driven 
image recognition/categorization



Exoplanets

Use case

• A bit of history: 

• In 1995 first observation of an 
exoplanet using radial velocities (Nobel 
prize in 2019, M. Mayor and D. Queloz) 

• In 1999 first observation using the 
transit method (showing inflated radii) 

• These exoplanets are similar to Jupiter 
but well inside the orbit of Mercury: Hot 
Jupiters



Close -> Hot
Synchronous rotation -> 
Permanent hot dayside and cold 
nightside

-> atmospheric 
circulation

3D Global Circulation 
Models (GCM) 
DYNAMICO (Dubos et al. 
2015)
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Fig. 4: Temporally averaged zonal wind (arrows) and temperature profile (map) at four di↵erent pressures levels (0.0026 bar - left,
0.016 bar - middle left, 0.2 bar - middle right, and 10 bar - right) for both our ‘hot’ (top) and ‘cool’ (bottom) HD209458b-like
atmospheric models.

of artificial tagged images from our limited sample of known
tagged data. For the inversion-up tag we generate three addi-
tional tagged images per input image, whilst for inversion-down
(which was a more numerous tag than inversion-up in the first
place), we merely generate a single artificial tagged image per
input tagged image. With this artificial training data-set for our
final two tags, we are now ready to train and apply the final
CNNs to our atmospheric models.

As shown in Figure 5b and Figure 7, the detected atmo-
spheric features in our ‘cool’ and ‘hot’ models di↵er signifi-
cantly.
The ‘cool’ model is dominated by a (tidally) locked day-side hot-
spot throughout the outer atmosphere, the unexpected night-side
hot-spot at mid pressures, and a latitudinally asymmetric thermal
structure in the deep atmosphere, indicating weak deep mixing.
On the other hand, our ‘hot’ model is dominated by a rather
di↵erent set of tags: as in the ‘cool’ model, at very low pres-
sures (but also at higher pressures near initialisation) the thermal
structure is dominated by a (tidally) locked day-side hot-spot.
However, as we move to higher pressures (and later times), this
locked profile transitions into the typical butterfly thermal struc-
ture expected for hot Jupiters. Note that this detection of a but-
terfly tag does eventually vanish at later times, but as we dis-
cuss in Section 3.2.3, this is a problem with our initial training
data set not properly accounting for the very strong, and latitudi-
nally compressed, butterfly-like thermal structure that develops
at short orbital radii/fast rotation rates. Finally we find that the
deep atmosphere is dominated by the detection of latitudinally
symmetric, and longitudinally homogenous, thermal bands, in-
dicating that the deep atmosphere is well homogenised longitu-
dinally, likely thanks to the zonal jet.
Briefly, these di↵erences in (detected) atmospheric dynamics
can be linked to the di↵erent rotation and irradiation regimes that

the two models fall into: our ‘cool’ model is both weakly irra-
diated and slowly rotating, and thus both equatorial and vertical
advection play little to no role in controlling the atmospheric dy-
namics, whereas our ‘hot’ model is both highly irradiated and
rapidly rotating, leading to a strong, deep, zonal jet (Figure 3a)
which drives significant equatorial and vertical advection (as
seen in HD209458b), and hence energy transport and mixing.
We explore these di↵erences in more detail below.

3.2.2. Understanding the detected atmospheric features and
their implications

As previously alluded to, the atmospheric models we consider
here fall into two distinct regimes depending upon their,
tidally-locked, orbital radii (i.e. surface irradiation and rotation
rate). At short orbital radii (the ‘hot’ regime), the hot Jupiter
atmospheric dynamics are dominated by a strong zonal-mean,
equatorial, zonal jet that extends deep into the atmosphere
(Figure 3a) and which drives significant downflows (Figure 3b)
resulting in vertical mixing, and hence deep heating (and radius
inflation - Tremblin et al. 2017; Sainsbury-Martinez et al. 2019).
On the other hand, at longer orbital radii (the ‘cool’ regime),
this is no longer the case and instead the zonal-mean zonal
jet is significantly weaker and shallower (Figure 3c), and thus
associated with significantly weaker vertical mixing (Figure 3d)
which drives little to no deep heating.

However, in order to fully explain the classifications assigned
by our CNNs, we must look at more than just the zonal-mean dy-
namics. Specifically we are interested in the di↵erences in hor-
izontal wind dynamics between our ‘hot’ and ‘cool’ cases, and

4 https://www.youtube.com/watch?v=s-7AXs5_owg and
https://www.youtube.com/watch?v=toDpbqer2e4
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Hotspot with a zonal jet -> offset

Observed with phase curves (e.g. 
James Webb Space Telescope)



3D GCM simulations

Simulation dataset

• Initial setup of Sainsbury-Martinez et al. 
2019 to provide a solution for the 
inflated radii of Hot Jupiters 

• Parametric study to explore the effect of 
rotation rate on the deep circulation 

• Create a dataset of 128x128 2D images 
at a given time and pressure level in the 
atmosphere



Tiled visualization for display walls

Supervised classification

• Classification relying on AI-driven 
computer vision (CNN) 

• Supervised learning using TiledViz tool 
developed at MdlS by M. Mancip 

• 4 categories, ~500 images in the 
training dataset
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Fig. 4: Temporally averaged zonal wind (arrows) and temperature profile (map) at four di↵erent pressures levels (0.0026 bar - left,
0.016 bar - middle left, 0.2 bar - middle right, and 10 bar - right) for both our ‘hot’ (top) and ‘cool’ (bottom) HD209458b-like
atmospheric models.

of artificial tagged images from our limited sample of known
tagged data. For the inversion-up tag we generate three addi-
tional tagged images per input image, whilst for inversion-down
(which was a more numerous tag than inversion-up in the first
place), we merely generate a single artificial tagged image per
input tagged image. With this artificial training data-set for our
final two tags, we are now ready to train and apply the final
CNNs to our atmospheric models.

As shown in Figure 5b and Figure 7, the detected atmo-
spheric features in our ‘cool’ and ‘hot’ models di↵er signifi-
cantly.
The ‘cool’ model is dominated by a (tidally) locked day-side hot-
spot throughout the outer atmosphere, the unexpected night-side
hot-spot at mid pressures, and a latitudinally asymmetric thermal
structure in the deep atmosphere, indicating weak deep mixing.
On the other hand, our ‘hot’ model is dominated by a rather
di↵erent set of tags: as in the ‘cool’ model, at very low pres-
sures (but also at higher pressures near initialisation) the thermal
structure is dominated by a (tidally) locked day-side hot-spot.
However, as we move to higher pressures (and later times), this
locked profile transitions into the typical butterfly thermal struc-
ture expected for hot Jupiters. Note that this detection of a but-
terfly tag does eventually vanish at later times, but as we dis-
cuss in Section 3.2.3, this is a problem with our initial training
data set not properly accounting for the very strong, and latitudi-
nally compressed, butterfly-like thermal structure that develops
at short orbital radii/fast rotation rates. Finally we find that the
deep atmosphere is dominated by the detection of latitudinally
symmetric, and longitudinally homogenous, thermal bands, in-
dicating that the deep atmosphere is well homogenised longitu-
dinally, likely thanks to the zonal jet.
Briefly, these di↵erences in (detected) atmospheric dynamics
can be linked to the di↵erent rotation and irradiation regimes that

the two models fall into: our ‘cool’ model is both weakly irra-
diated and slowly rotating, and thus both equatorial and vertical
advection play little to no role in controlling the atmospheric dy-
namics, whereas our ‘hot’ model is both highly irradiated and
rapidly rotating, leading to a strong, deep, zonal jet (Figure 3a)
which drives significant equatorial and vertical advection (as
seen in HD209458b), and hence energy transport and mixing.
We explore these di↵erences in more detail below.

3.2.2. Understanding the detected atmospheric features and
their implications

As previously alluded to, the atmospheric models we consider
here fall into two distinct regimes depending upon their,
tidally-locked, orbital radii (i.e. surface irradiation and rotation
rate). At short orbital radii (the ‘hot’ regime), the hot Jupiter
atmospheric dynamics are dominated by a strong zonal-mean,
equatorial, zonal jet that extends deep into the atmosphere
(Figure 3a) and which drives significant downflows (Figure 3b)
resulting in vertical mixing, and hence deep heating (and radius
inflation - Tremblin et al. 2017; Sainsbury-Martinez et al. 2019).
On the other hand, at longer orbital radii (the ‘cool’ regime),
this is no longer the case and instead the zonal-mean zonal
jet is significantly weaker and shallower (Figure 3c), and thus
associated with significantly weaker vertical mixing (Figure 3d)
which drives little to no deep heating.

However, in order to fully explain the classifications assigned
by our CNNs, we must look at more than just the zonal-mean dy-
namics. Specifically we are interested in the di↵erences in hor-
izontal wind dynamics between our ‘hot’ and ‘cool’ cases, and
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Fig. 4: Temporally averaged zonal wind (arrows) and temperature profile (map) at four di↵erent pressures levels (0.0026 bar - left,
0.016 bar - middle left, 0.2 bar - middle right, and 10 bar - right) for both our ‘hot’ (top) and ‘cool’ (bottom) HD209458b-like
atmospheric models.

of artificial tagged images from our limited sample of known
tagged data. For the inversion-up tag we generate three addi-
tional tagged images per input image, whilst for inversion-down
(which was a more numerous tag than inversion-up in the first
place), we merely generate a single artificial tagged image per
input tagged image. With this artificial training data-set for our
final two tags, we are now ready to train and apply the final
CNNs to our atmospheric models.

As shown in Figure 5b and Figure 7, the detected atmo-
spheric features in our ‘cool’ and ‘hot’ models di↵er signifi-
cantly.
The ‘cool’ model is dominated by a (tidally) locked day-side hot-
spot throughout the outer atmosphere, the unexpected night-side
hot-spot at mid pressures, and a latitudinally asymmetric thermal
structure in the deep atmosphere, indicating weak deep mixing.
On the other hand, our ‘hot’ model is dominated by a rather
di↵erent set of tags: as in the ‘cool’ model, at very low pres-
sures (but also at higher pressures near initialisation) the thermal
structure is dominated by a (tidally) locked day-side hot-spot.
However, as we move to higher pressures (and later times), this
locked profile transitions into the typical butterfly thermal struc-
ture expected for hot Jupiters. Note that this detection of a but-
terfly tag does eventually vanish at later times, but as we dis-
cuss in Section 3.2.3, this is a problem with our initial training
data set not properly accounting for the very strong, and latitudi-
nally compressed, butterfly-like thermal structure that develops
at short orbital radii/fast rotation rates. Finally we find that the
deep atmosphere is dominated by the detection of latitudinally
symmetric, and longitudinally homogenous, thermal bands, in-
dicating that the deep atmosphere is well homogenised longitu-
dinally, likely thanks to the zonal jet.
Briefly, these di↵erences in (detected) atmospheric dynamics
can be linked to the di↵erent rotation and irradiation regimes that

the two models fall into: our ‘cool’ model is both weakly irra-
diated and slowly rotating, and thus both equatorial and vertical
advection play little to no role in controlling the atmospheric dy-
namics, whereas our ‘hot’ model is both highly irradiated and
rapidly rotating, leading to a strong, deep, zonal jet (Figure 3a)
which drives significant equatorial and vertical advection (as
seen in HD209458b), and hence energy transport and mixing.
We explore these di↵erences in more detail below.

3.2.2. Understanding the detected atmospheric features and
their implications

As previously alluded to, the atmospheric models we consider
here fall into two distinct regimes depending upon their,
tidally-locked, orbital radii (i.e. surface irradiation and rotation
rate). At short orbital radii (the ‘hot’ regime), the hot Jupiter
atmospheric dynamics are dominated by a strong zonal-mean,
equatorial, zonal jet that extends deep into the atmosphere
(Figure 3a) and which drives significant downflows (Figure 3b)
resulting in vertical mixing, and hence deep heating (and radius
inflation - Tremblin et al. 2017; Sainsbury-Martinez et al. 2019).
On the other hand, at longer orbital radii (the ‘cool’ regime),
this is no longer the case and instead the zonal-mean zonal
jet is significantly weaker and shallower (Figure 3c), and thus
associated with significantly weaker vertical mixing (Figure 3d)
which drives little to no deep heating.

However, in order to fully explain the classifications assigned
by our CNNs, we must look at more than just the zonal-mean dy-
namics. Specifically we are interested in the di↵erences in hor-
izontal wind dynamics between our ‘hot’ and ‘cool’ cases, and
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Fig. 4: Temporally averaged zonal wind (arrows) and temperature profile (map) at four di↵erent pressures levels (0.0026 bar - left,
0.016 bar - middle left, 0.2 bar - middle right, and 10 bar - right) for both our ‘hot’ (top) and ‘cool’ (bottom) HD209458b-like
atmospheric models.

of artificial tagged images from our limited sample of known
tagged data. For the inversion-up tag we generate three addi-
tional tagged images per input image, whilst for inversion-down
(which was a more numerous tag than inversion-up in the first
place), we merely generate a single artificial tagged image per
input tagged image. With this artificial training data-set for our
final two tags, we are now ready to train and apply the final
CNNs to our atmospheric models.

As shown in Figure 5b and Figure 7, the detected atmo-
spheric features in our ‘cool’ and ‘hot’ models di↵er signifi-
cantly.
The ‘cool’ model is dominated by a (tidally) locked day-side hot-
spot throughout the outer atmosphere, the unexpected night-side
hot-spot at mid pressures, and a latitudinally asymmetric thermal
structure in the deep atmosphere, indicating weak deep mixing.
On the other hand, our ‘hot’ model is dominated by a rather
di↵erent set of tags: as in the ‘cool’ model, at very low pres-
sures (but also at higher pressures near initialisation) the thermal
structure is dominated by a (tidally) locked day-side hot-spot.
However, as we move to higher pressures (and later times), this
locked profile transitions into the typical butterfly thermal struc-
ture expected for hot Jupiters. Note that this detection of a but-
terfly tag does eventually vanish at later times, but as we dis-
cuss in Section 3.2.3, this is a problem with our initial training
data set not properly accounting for the very strong, and latitudi-
nally compressed, butterfly-like thermal structure that develops
at short orbital radii/fast rotation rates. Finally we find that the
deep atmosphere is dominated by the detection of latitudinally
symmetric, and longitudinally homogenous, thermal bands, in-
dicating that the deep atmosphere is well homogenised longitu-
dinally, likely thanks to the zonal jet.
Briefly, these di↵erences in (detected) atmospheric dynamics
can be linked to the di↵erent rotation and irradiation regimes that

the two models fall into: our ‘cool’ model is both weakly irra-
diated and slowly rotating, and thus both equatorial and vertical
advection play little to no role in controlling the atmospheric dy-
namics, whereas our ‘hot’ model is both highly irradiated and
rapidly rotating, leading to a strong, deep, zonal jet (Figure 3a)
which drives significant equatorial and vertical advection (as
seen in HD209458b), and hence energy transport and mixing.
We explore these di↵erences in more detail below.

3.2.2. Understanding the detected atmospheric features and
their implications

As previously alluded to, the atmospheric models we consider
here fall into two distinct regimes depending upon their,
tidally-locked, orbital radii (i.e. surface irradiation and rotation
rate). At short orbital radii (the ‘hot’ regime), the hot Jupiter
atmospheric dynamics are dominated by a strong zonal-mean,
equatorial, zonal jet that extends deep into the atmosphere
(Figure 3a) and which drives significant downflows (Figure 3b)
resulting in vertical mixing, and hence deep heating (and radius
inflation - Tremblin et al. 2017; Sainsbury-Martinez et al. 2019).
On the other hand, at longer orbital radii (the ‘cool’ regime),
this is no longer the case and instead the zonal-mean zonal
jet is significantly weaker and shallower (Figure 3c), and thus
associated with significantly weaker vertical mixing (Figure 3d)
which drives little to no deep heating.

However, in order to fully explain the classifications assigned
by our CNNs, we must look at more than just the zonal-mean dy-
namics. Specifically we are interested in the di↵erences in hor-
izontal wind dynamics between our ‘hot’ and ‘cool’ cases, and
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Fig. 4: Temporally averaged zonal wind (arrows) and temperature profile (map) at four di↵erent pressures levels (0.0026 bar - left,
0.016 bar - middle left, 0.2 bar - middle right, and 10 bar - right) for both our ‘hot’ (top) and ‘cool’ (bottom) HD209458b-like
atmospheric models.

of artificial tagged images from our limited sample of known
tagged data. For the inversion-up tag we generate three addi-
tional tagged images per input image, whilst for inversion-down
(which was a more numerous tag than inversion-up in the first
place), we merely generate a single artificial tagged image per
input tagged image. With this artificial training data-set for our
final two tags, we are now ready to train and apply the final
CNNs to our atmospheric models.

As shown in Figure 5b and Figure 7, the detected atmo-
spheric features in our ‘cool’ and ‘hot’ models di↵er signifi-
cantly.
The ‘cool’ model is dominated by a (tidally) locked day-side hot-
spot throughout the outer atmosphere, the unexpected night-side
hot-spot at mid pressures, and a latitudinally asymmetric thermal
structure in the deep atmosphere, indicating weak deep mixing.
On the other hand, our ‘hot’ model is dominated by a rather
di↵erent set of tags: as in the ‘cool’ model, at very low pres-
sures (but also at higher pressures near initialisation) the thermal
structure is dominated by a (tidally) locked day-side hot-spot.
However, as we move to higher pressures (and later times), this
locked profile transitions into the typical butterfly thermal struc-
ture expected for hot Jupiters. Note that this detection of a but-
terfly tag does eventually vanish at later times, but as we dis-
cuss in Section 3.2.3, this is a problem with our initial training
data set not properly accounting for the very strong, and latitudi-
nally compressed, butterfly-like thermal structure that develops
at short orbital radii/fast rotation rates. Finally we find that the
deep atmosphere is dominated by the detection of latitudinally
symmetric, and longitudinally homogenous, thermal bands, in-
dicating that the deep atmosphere is well homogenised longitu-
dinally, likely thanks to the zonal jet.
Briefly, these di↵erences in (detected) atmospheric dynamics
can be linked to the di↵erent rotation and irradiation regimes that

the two models fall into: our ‘cool’ model is both weakly irra-
diated and slowly rotating, and thus both equatorial and vertical
advection play little to no role in controlling the atmospheric dy-
namics, whereas our ‘hot’ model is both highly irradiated and
rapidly rotating, leading to a strong, deep, zonal jet (Figure 3a)
which drives significant equatorial and vertical advection (as
seen in HD209458b), and hence energy transport and mixing.
We explore these di↵erences in more detail below.

3.2.2. Understanding the detected atmospheric features and
their implications

As previously alluded to, the atmospheric models we consider
here fall into two distinct regimes depending upon their,
tidally-locked, orbital radii (i.e. surface irradiation and rotation
rate). At short orbital radii (the ‘hot’ regime), the hot Jupiter
atmospheric dynamics are dominated by a strong zonal-mean,
equatorial, zonal jet that extends deep into the atmosphere
(Figure 3a) and which drives significant downflows (Figure 3b)
resulting in vertical mixing, and hence deep heating (and radius
inflation - Tremblin et al. 2017; Sainsbury-Martinez et al. 2019).
On the other hand, at longer orbital radii (the ‘cool’ regime),
this is no longer the case and instead the zonal-mean zonal
jet is significantly weaker and shallower (Figure 3c), and thus
associated with significantly weaker vertical mixing (Figure 3d)
which drives little to no deep heating.

However, in order to fully explain the classifications assigned
by our CNNs, we must look at more than just the zonal-mean dy-
namics. Specifically we are interested in the di↵erences in hor-
izontal wind dynamics between our ‘hot’ and ‘cool’ cases, and
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https://www.youtube.com/watch?v=toDpbqer2e4
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« Banded »

« Asymmetric »



What we expect 🙂 (but boring) What we did not expect 🤔 (but interesting!)

???



A nighside hot spot! (Important 
for phase curve observations)
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Fig. 4: Temporally averaged zonal wind (arrows) and temperature profile (map) at four di↵erent pressures levels (0.0026 bar - left,
0.016 bar - middle left, 0.2 bar - middle right, and 10 bar - right) for both our ‘hot’ (top) and ‘cool’ (bottom) HD209458b-like
atmospheric models.

of artificial tagged images from our limited sample of known
tagged data. For the inversion-up tag we generate three addi-
tional tagged images per input image, whilst for inversion-down
(which was a more numerous tag than inversion-up in the first
place), we merely generate a single artificial tagged image per
input tagged image. With this artificial training data-set for our
final two tags, we are now ready to train and apply the final
CNNs to our atmospheric models.

As shown in Figure 5b and Figure 7, the detected atmo-
spheric features in our ‘cool’ and ‘hot’ models di↵er signifi-
cantly.
The ‘cool’ model is dominated by a (tidally) locked day-side hot-
spot throughout the outer atmosphere, the unexpected night-side
hot-spot at mid pressures, and a latitudinally asymmetric thermal
structure in the deep atmosphere, indicating weak deep mixing.
On the other hand, our ‘hot’ model is dominated by a rather
di↵erent set of tags: as in the ‘cool’ model, at very low pres-
sures (but also at higher pressures near initialisation) the thermal
structure is dominated by a (tidally) locked day-side hot-spot.
However, as we move to higher pressures (and later times), this
locked profile transitions into the typical butterfly thermal struc-
ture expected for hot Jupiters. Note that this detection of a but-
terfly tag does eventually vanish at later times, but as we dis-
cuss in Section 3.2.3, this is a problem with our initial training
data set not properly accounting for the very strong, and latitudi-
nally compressed, butterfly-like thermal structure that develops
at short orbital radii/fast rotation rates. Finally we find that the
deep atmosphere is dominated by the detection of latitudinally
symmetric, and longitudinally homogenous, thermal bands, in-
dicating that the deep atmosphere is well homogenised longitu-
dinally, likely thanks to the zonal jet.
Briefly, these di↵erences in (detected) atmospheric dynamics
can be linked to the di↵erent rotation and irradiation regimes that

the two models fall into: our ‘cool’ model is both weakly irra-
diated and slowly rotating, and thus both equatorial and vertical
advection play little to no role in controlling the atmospheric dy-
namics, whereas our ‘hot’ model is both highly irradiated and
rapidly rotating, leading to a strong, deep, zonal jet (Figure 3a)
which drives significant equatorial and vertical advection (as
seen in HD209458b), and hence energy transport and mixing.
We explore these di↵erences in more detail below.

3.2.2. Understanding the detected atmospheric features and
their implications

As previously alluded to, the atmospheric models we consider
here fall into two distinct regimes depending upon their,
tidally-locked, orbital radii (i.e. surface irradiation and rotation
rate). At short orbital radii (the ‘hot’ regime), the hot Jupiter
atmospheric dynamics are dominated by a strong zonal-mean,
equatorial, zonal jet that extends deep into the atmosphere
(Figure 3a) and which drives significant downflows (Figure 3b)
resulting in vertical mixing, and hence deep heating (and radius
inflation - Tremblin et al. 2017; Sainsbury-Martinez et al. 2019).
On the other hand, at longer orbital radii (the ‘cool’ regime),
this is no longer the case and instead the zonal-mean zonal
jet is significantly weaker and shallower (Figure 3c), and thus
associated with significantly weaker vertical mixing (Figure 3d)
which drives little to no deep heating.

However, in order to fully explain the classifications assigned
by our CNNs, we must look at more than just the zonal-mean dy-
namics. Specifically we are interested in the di↵erences in hor-
izontal wind dynamics between our ‘hot’ and ‘cool’ cases, and
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(d) ‘Cool’: Divergent (e) ‘Cool’: Rotational (f) ‘Cool’: Eddy

Fig. 8: Helmholtz decomposition of the radially averaged horizontal wind for both our ‘hot’ (top) and ‘cool’ (bottom) HD209458b-
like atmospheric models. To the left we plot the divergent component (ud) of the helmholtz decomposition, in the middle, the
rotational component (ur), and on the right the eddy component (ue = ur � huri) of the rotational component of the wind.

Fig. 9: 3D streamlines of the horizontal wind Helmholtz decomposition for our ‘hot’ HD209458b-like atmospheric model. In the
top left we show the full horizontal wind, in the top right we show the rotational component of the decomposition, in the bottom left
we show the eddy component, and in the bottom right we show the divergent component.
Note: The sources for the streamlines shown above have been chosen to emphasis the di↵erent wind structures present in each
component of the decomposition - for the full-map of each decomposition, see Figure 8. A video version of this plot is available
online4

longer orbits, orbits which are now becoming accessible to ob-
servations thanks to next generation telescopes, such as JWST
(James Webb Space Telescope) or TESS (Transiting Exoplanet
Survey Satellite). Thanks to our CNNs we have identified an un-
expected feature in the atmospheres of more slowly rotating hot
Jupiters. If this feature proves to be robust, it may have impli-
cations for our understanding of hot Jupiter atmospheric chem-
istry. This is because a thermal inversion on the night-side may
have implications for distribution of chemical compounds since

it essentially acts as a cold trap in which denser materials might
condense, essentially raining out of the outer atmosphere and
preventing detection. As such, and as a result of this work, we
have followed this study up, in Sainsbury-Martinez & Tremblin
(2022 - in prep), with a more indepth study isolating how rota-
tion alone a↵ects irradiated atmospheric dynamics. Particularly
with a focus on day-night winds and energy transport in slowly
irradiated Jupiters. If this proves to be robust, which prelimi-
nary results suggest to be the case, we further suggest that this
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Fig. 8: Helmholtz decomposition of the radially averaged horizontal wind for both our ‘hot’ (top) and ‘cool’ (bottom) HD209458b-
like atmospheric models. To the left we plot the divergent component (ud) of the helmholtz decomposition, in the middle, the
rotational component (ur), and on the right the eddy component (ue = ur � huri) of the rotational component of the wind.

Fig. 9: 3D streamlines of the horizontal wind Helmholtz decomposition for our ‘hot’ HD209458b-like atmospheric model. In the
top left we show the full horizontal wind, in the top right we show the rotational component of the decomposition, in the bottom left
we show the eddy component, and in the bottom right we show the divergent component.
Note: The sources for the streamlines shown above have been chosen to emphasis the di↵erent wind structures present in each
component of the decomposition - for the full-map of each decomposition, see Figure 8. A video version of this plot is available
online4

longer orbits, orbits which are now becoming accessible to ob-
servations thanks to next generation telescopes, such as JWST
(James Webb Space Telescope) or TESS (Transiting Exoplanet
Survey Satellite). Thanks to our CNNs we have identified an un-
expected feature in the atmospheres of more slowly rotating hot
Jupiters. If this feature proves to be robust, it may have impli-
cations for our understanding of hot Jupiter atmospheric chem-
istry. This is because a thermal inversion on the night-side may
have implications for distribution of chemical compounds since

it essentially acts as a cold trap in which denser materials might
condense, essentially raining out of the outer atmosphere and
preventing detection. As such, and as a result of this work, we
have followed this study up, in Sainsbury-Martinez & Tremblin
(2022 - in prep), with a more indepth study isolating how rota-
tion alone a↵ects irradiated atmospheric dynamics. Particularly
with a focus on day-night winds and energy transport in slowly
irradiated Jupiters. If this proves to be robust, which prelimi-
nary results suggest to be the case, we further suggest that this
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Conclusion: 

AI is often used to find something we know in noisy data (event/pattern detection). AI-driven 
classification can be used to remove what we know a-priori and explore what we did not expect! 

Sainsbury-Martinez F., Tremblin P., Mancip M., Donfack S., Honore E., Bourenane M.  
ApJ 958 68 2023



Future work: 

PTC ASSIST H. Taher, M. Lobet, M. Mancip



Pre-exascale MHD dynamo

Dynostar

• PhD Rémi Bourgeois @MdlS -> DES/SGLS 

• MPI+Kokkos 3D finite volume simulations 
of MHD dynamo up to 4096^3 (126 kh 
GPU on ~1000 GPUs Adastra@CINES) 

• PDI+DEISA in-situ data analytics (exa-
DoST WP1 & WP2) 

• Compute power spectra with in-situ data 
analytics to check the convergence 
before upscaling of the simulation



A side note on performances

• For comparisons (not exactly the same models and solvers but relatively similar), JAX-Fluid (https://
arxiv.org/abs/2402.05193) seems to be at 2 Mcells/s on A100 i.e. a factor x200 in favor of MPI+Kokkos  

• It is very easy to get good weak scaling in HPC when the base performance is low. But this is maybe a 
lot of Watts that may not be efficiently used.

https://arxiv.org/abs/2402.05193
https://arxiv.org/abs/2402.05193


PDI Data Interface

PDI & DEISA

Dask-Enabled In-Situ Analytics (DEISA)
• Initially developped during the PhD of Amal Gueroudji @MdlS & INRIA-Grenoble and part of exa-DosT WP2 developments 

• DEISA is a library that ensures coupling MPI simulation codes with Dask analytics 

• A simulation can be instrumented with PDI to make its internal data available for DEISA thus Dask. At the beginning each 
simulation process reads the yaml configuration file and loads the DEISA and the MPI plugins of PDI.

• Initially developed @MdlS, soon part of the High Performance Software Foundation and part of exa-DoST WP1 developments 

• PDI supports loose coupling of simulation codes with data handling libraries. The simulation code is annotated in a library-
agnostic way, libraries are used from the specification tree.  

• This approach works well for a number of concerns including: parameters reading, data initialization, post-processing, result 
storage to disk, visualization, fault tolerance, logging, inclusion as part of code-coupling, inclusion as part of an ensemble 
run, etc.

https://en.wikipedia.org/wiki/Loose_coupling
https://pdi.dev/master/Specification_tree_ref.html


• Through PDI+DEISA: 

• Monitoring of total magnetic and kinetic energies (high time 
frequencies) 

• Monitoring of the power spectra in the mid plane (MPI reconstruction 
of the plane) 

• High frequency outputs of xy xz yz planes for 2D movies



Very early work

AI small-scale closure

• Internship of Jona Nagerl @MdlS, PhD 
of T. Antoun @MdlS+IRFU (12/24) 

• Finite volume closures for HD/MHD 
small scale turbulence 

• Based on statistical mechanics through 
microscopic closure terms (Fick, stress 
tensor, conduction)














