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The 21-cm signal during the « Cosmic Dawn »Massive stars:

Quasars:

The first billion years

Upper limits with
LOFAR, HERA, 
MWA, NenuFAR.
-> SKA 2027
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Forward model: The LICORICE code
- Dynamics (Treecode + SPH)
- Monte Carlo Ray-Tracing RT: UV and X
- Lyman-alpha 3D RT
- MPI+OpenMP parallelization

HIRRAH-21 simulation (2018): 
- 300 Mpc box
- 1010 particles, > 109 M⦿ ,  resolution ~ 3 kpc
- 4 x 1012 photons
- 5 Mh CPU. 4096 MPI domains, 16384 core.

How to perform inversion?



Bayesian Inference with 3D RT simulations?

Possible inference methods:

1) Bayesian MCMC: > 105 model evaluations => Not with 3D RT!

2)   Model inversion with ML (bayesian or not): a few 103 models

3)   Trained ML emulator (a few 103 models) + MCMC

4) SBI: ML Density Estimator (a few 103 models AND implicit likelihood)

=> We need to build a training set with 3D RT simulations! 
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LoReLi II database
(Mériot, Semelin and Cornu, in prep, 2024)10 000 simulations (1.5 Po, 5 Mh CPU)

500 000  21-cm cubes (80 To)

Explore a 5-param space: fX, Mmin, 𝛕SF, fesc , and RH/S

Non-hypercubic domain (prior) to account for observational constraints



Mériot et al. (2024)

Emulator based inference

Train NN with Loreli2:
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Mériot, Semelin and Cornu, in prep, 2024



Principle of Simulation-based inference (SBI)

Emulator based inference:

- Assume uncorrelated noise with known variance and mean
=> 𝑃 𝑑𝑎𝑡𝑎 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ) = analytical gaussian

But correlations exist and 21-cm signal is non gaussian

If we can simulate the signal and the noise (yes we can!) 

=> One simulation = one draw from 𝑃 𝑑𝑎𝑡𝑎 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 )

=> Train NN to fit 𝑃 (or the posterior) from a collection of draws (LoReLi II)

=> Use trained NN for very fast MCMC inference



SBI with Loreli II
- Assume 100h SKA thermal noise
- Noiseless mock target signal

=> true params +/- centered

- Train 10 NN to evaluate stability
- Also infer with stacked NNs

Control validity with SBC (~1000 inferences!):

=> Bias < 0.2 𝜎
=> underconfident by ~20%

… a promising approach!

Mériot, Semelin and Cornu, in prep, 2024



Maximizing information with SBI
Combining several summary statistics (or observables!):

- no analytic form for the likelihood
- not independent => correlations

Example with 21-cm signal:

- Power spectrum + Pixel Distrib Func)
- Fit joint likelihood with NDE
- Train NDE on LoReLi II
- MCMC inference

=> A net gain of information

Semelin, Mériot and Cornu, in prep



Conclusions and perspectives

Current accuracy:   ~ 0.2 x variance,  ~0.2 x training grid step

- Further improve physical modelling
- Streamline data production pipeline
- Reduce stored data volume
- Refine prior, perform adaptive sampling

Reduced variance
(longer obs time, 
less noise in data)

Expand training
Database
(Loreli III)



Thank you!


