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Self-Supervised Learning (SSL)

.,

» Reduce the need for large quantities of annotations
» Exploit the massive amount of uncurated, unlabeled
remote sensing data for learning good representations

Supervised learning
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Contrastive Learning Methods

contrastive loss
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Momentum Contrast for Unsupervised Visual Representation Learning
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Reconstruction-Based Methods
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Masked Autoencoders Are Scalable Vision Learners
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Foundation Models

.,

» Deep Learning models trained on massive unlabeled datasets

Machine learning

» Usually trained via self-supervised learning

Deep learning
» Handle a wide variety of tasks

Foundation Models
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Can we build a Foundation Model for Remote Sensing applications ?
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Benchmarking Self-supervised Learning Methods in
Remote Sensing

Fabien Merceron, Vincent Partimbene, Gohar Dashyan, Sébastien Saubert,
Guillaume Peltier, Kévin Sanchis and Pierre-Antoine Ganaye
Preligens
Paris, France
Email: <name>.<surname> @preligens.com

Abstract—Self-supervised pretraining has proved to be a com-
petitive tool to improve downstream task performance in the
field of remote sensing. Attempts to create geospatial foundation
models based on such pretraining techniques are increasing in
numbers, and are a promising solution to exploit the vast amount
of unannotated remote sensing imagery. Due to the widespread
availability of various self-supervised techniques, either generic
or specific to remote sensing, it becomes of importance for practi-
tioners to find a way to identify the best performing pretraining
method based on the downstream task being tackled. In this
paper, we present a systematic benchmark of commonly used
self-supervised pretraining methods and provide insights into the
most appropriate approach depending on the chosen downstream
tasks. Our results indicate that Masked Auto Encoders (MAE), a
reconstruction-based method, seems to be the overall winner on
most use-cases. We also show that ImageNet remains a powerful
pretraining dataset and can produce competitive baselines, while
building a tailored pretraining dataset using high-resolution satel-
lite images can effectively improve the downstream performance
compared to such baselines. Finally, we study the computational
efficiency of pretraining methods and provide recommendations
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Main Conclusions of the Study

3 Downstream Tasks
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Experimental Protocol
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Why do we need a HPC ?

Massive unlabeled datasets

Number of images
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Wide variety of tasks
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Technical Requirements
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Building Pretraining Datasets
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Thousands of rasters

Datasets

» Process remote sensing
imagery at scale (tiling, data
selection)

Source: Maxar

An image in our datasets Parallel processing on
multiple machines
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Building Pretraining Datasets

Thousands of rasters
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selection)
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Training Models at Scale
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Q Taking advantage of open-source software to reduce
boilerplate and easy access to neural network
architectures
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Training Models at Scale
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Comparing Experiments

Results
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» Compare all trainings by
visualizing performance
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Summary
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Processing of remote

Experiments with SSL sensing imagery at Hundreds of trainings MAE is the best SSL
methods to build a gscaleg b of neural networks with method in our
Geo-Foundation Model different scales benchmarks

(up to 17M images)

Can we build a Foundation Model for Remote Sensing applications ?
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Future Directions
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