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Data at exascale: a challenge in hardware

• Increasing gap between compute and
I/O performance on large-scale
systems

• Ratio of I/O to computing power divided
by ~10 over the last 10 years on the top 3
supercomputers

• … and data deluge!
• At NERSC, data volume x41 in 10 years

• New storage tiers and advanced
architectures to try to mitigate this
increasing bottleneck

• More complex on-node memory layout
• Emerging complex applications and

workflows have to adapt

Compute node
Compute node w/ node-local storage
[Network/PCIe]-attached storage
Burst-buffer / Dedicated nodes
Gateway nodes / IO forwarding nodes
Flash-based PFS / Short-term
HDD-based PFS / [Medium/long]-term

Trend in storage technologies available on extreme-scale systems

2Workshop ExaDI IA – Paris, 2-3 Octobre 2024



Data at exascale: a challenge in usages

• HPC centers do not live in isolation
anymore
• Edge - Cloud - HPC continuum

• Emerging workloads are hybrid
• High-performance simulation
• High-performance data analytics
• Machine learning and artificial intelligence

• Interaction with data from the outside
world sensors
• Large scientific instruments
• …

SKA data workflow from sensors to HPC centers
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Our ambition

Approach:

• Research on data-oriented tools for HPC
• Transverse, re-usable tools
• Usable in production at exascale

⇒ ExaDoST will produce:

• New approaches to handle the data challenge at exascale
• Transverse libraries & tools that implement these approaches

Validated in illustrators at full scale
Fully 

open-source

Fully 
application 

agnostic

Fill the gaps in the existing 
software stack designed by 

previous projects 
(e.g.  ECP)

Take into account 
French & European 

specificities

Ensure French & 
European needs are 
taken into account in 

roadmaps
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Work Packages in Exa-DoST

WP1: Exascale 
I/O and storage

WP2: Exascale 
In-situ data 
processing

WP5: Management, dissemination and training

WP3: Exascale 
ML-based data

analytics

WP4: Shared building blocks
& integrated illustrators
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Identified applications
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Event detection and tracking

• Finding and tracking patterns

• Finding change points

Anomaly detection

• Modeling nominal data

• Finding model deviation

Data compression

• For storage/comm’

• For anomaly detection

From discussion with Gysela / SKA / Coddex

Challenges

- Data cannot be stored -> need learning algorithms that can handle streams of data
- Data is distributed -> need models that work on subdomains
- Labelling is costly -> unsupervised learning/transfer learning
- In situ -> need to be fast enough and have limited auxiliary memory



Event detection
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Tokam2D/Gysela

- Burst of density
- many events per frame
- Trajectory are of interest
- Used for steering

SKA

- Fast radio bursts
- few events but many

"frames"
- The trajectory of events is

of interest

Codex

- Hot spot
- only few event per

simulation/ few
simulations

- Used for steering

In Nd-array that evolve through timeIn Mesh data

Distributed data Single node data

Roadmap: adapt Computer Vision literature to physical signals



Data-driven compression
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- Necessary to do compression to store/communicate the simulation result (big Nd-array)
- But compression can be adapted to specifically compute some diagnostic (statistics)

Gysela/Tokam2d:

- Compression of the 3D information to have the best reconstruction?
- The compression model needs to run with the distributed data

This is the interest of data-driven compression



Machine Learning Motifs
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Learning from distributed data

Learn a model that makes local 
decision based on Nd-array data 
partitioned into sub-domains, by 
minimizing communication and 
auxiliary memory consumption.

Unsupervised event-tracking

In large Nd-array evolving in 
time, some patterns are 
repeating (spatially) and moving 
(time). We would like to identify 
them and track them 
automatically, if possible with 
low memory/latency.

Anomaly detection

Detect deviation of the 
simulation with normal behavior 
to be able to stop simulation 
before numerical instability.

From a ML perspective



The Large Scale Ensemble Motif
From one to many simulation runs (parameter-sweep) to sample the simulation behavior in the parameter space

A classical pattern for: 
• Sensibility Analysis
• Data Assimilation
• Deep Surrogate Training
• Simulation Based Inference

Exascale: Embarrassingly parallel but still not that easy:
• Beware of data aggregation and I/Os.
• Support for heterogeneity, resilience, elasticity, modularity are critical at large scale

Melissa: A framework for large scale ensemble runs and on-line data processing:

    Open source, Free-BSD: https://gitlab.inria.fr/melissa
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Melissa Architecture
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data

Melissa
Parallel Melissa Server

Define the experimental design
Aggregate and analyse on-line the 

data received from members

File-less, Fault-tolerant, Elastic



Melissa Architecture
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data

Melissa
Sensibility Analysis

 (with EDF R&D)

File-less, Fault-tolerant, Elastic
Massive  run: 
- 80 000 simulation runs
- 271 TB of data processed online



Deep Surrogate Training

[Meyer et al.
[Meyer et al. SC’23]
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data

Melissa
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Offline training: 250 simulations, 100 epochs, 
100 GB Dataset, 24.5h training on 4 GPUs

Heat-PDE Surrogate Training

Online training: 5 120 cores to run 20 000 
simulations  generating  8TB of data processed 
online with 4 GPUs in 1.9 h

Based on GENCI consolidated costs (1 kh/core CPU = 6 euros, 1 kh/GPU V100 = 360 euros, 1To SSD storage = 56 euros):
    Offline data generation + initial training:  49.1 euros, retraining 41.16 euros (but storing the 8TB would cost 448 euros)
    Online training: 63.8 euros  

Solver: 2D Heat PDE on  a 1000x1000 grid.

Improve  generalization 
capabilities by 47%



Ensemble Based Motifs

Direct problems: 
● Sensibility Analysis
● Deep Surrogate Training  (currently investigating active learning)

Inverse problems:
● Data Assimilation (Ensemble Kalman Filters, Particle Filters)
● Simulation Based Inference (SBI):

Ensemble to train an invertible stochastic NN (Normalizing Flow) to learn the posterior 
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HPC versus DL Software
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HPC traditional programming stack:
• Fortran / C
• MPI (message passing interface)
• OpenMP (for multicore programming)
• CUDA / OpenMP/ OpenCL / Sycl / Kokkos… for GPU programming

Deep Learning  Differentiable programming stack:
• Python
• Tensorflow / Pytorch / Jax (NUMPY+ Auto Diff)
• Transparent GPU support through advanced JIT optimizations
• MPI for parallel training on multiple GPUs

Attempts to use these tools for developing
 classical solvers (JAX-Fluids, JAX-CFD)

 NeuralGCM  [Kochkov et al. 2024]
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