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Inverse problems

General model

Y ∼ P(A( x ))
linear case−−−−−→ y = A x + n (1)

• Y = y ∈ Rm : Observations/Measurements.

• x ∈ X ⊂ Rn : Signal/image to reconstruct from a given signal set X .

• A : Forward model including the deterministic physical part.

• P : Probabilistic model encompassing stochastic aspects of the observation y , e.g. noise n.

• Objective: estimate x from y given the model in Eq (1).

▶ An ill-posed problem.
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Inverse problem examples

General model

Y ∼ P(A( x ))
linear case−−−−−→ y = A x + n

Radio interferometric imaging

y x̂
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Magnetic Resonance Imaging

y x̂

Other inverse problems: cosmological mass-mapping, PSF modelling, computed tomography
imaging, deblurring, super-resolution, denoising, among others.
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Bayesian inference

Bayes’ theorem

p(x | y ,M)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(y | x ,M)

prior︷ ︸︸ ︷
p(x | M)

p(y | M)︸ ︷︷ ︸
evidence

=

likelihood︷ ︸︸ ︷
L(x)

prior︷ ︸︸ ︷
π(x)

Z︸︷︷︸
evidence

for a model M, observation y and signal x .

We often only require the unnormalised probability (disregarding Z ) to compute a point

estimator or samples from the posterior distribution,
posterior︷ ︸︸ ︷

p(x | y ,M) ∝

likelihood︷ ︸︸ ︷
p(y | x ,M)

prior︷ ︸︸ ︷
p(x | M)

• We rely on Markov Chain Monte Carlo (MCMC) to estimate posterior samples,
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Point estimates and priors

We select a point estimate to use as reconstruction, for example:

• MMSE estimation: x̂M,MMSE = E[ x | y ,M ] (posterior mean)

• maximum-a-posteriori (MAP) estimation: x̂M,MAP = argmaxx∈Rn p(x | y ,M) (posterior

mode)

Then,

1. The likelihood is based on the physics of the inverse problem.

2. We choose the prior based on our previous knowledge of X .

3. We usually characterise the high-dimensional posterior through posterior samples.
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Outline

1. Fast and scalable UQ for radio interferometric imaging: Towards SKA
▶ QuantifAI: Bayesian model with convex data-driven priors
▶ EVIL-Deconv: Fast reconstruction through algorithm unrolling
▶ CARB: unsupervised UQ for fast unrolled models
▶ Approximate posterior sampling with rcGANs

2. What data-driven prior should I use for my problem?
▶ Nested sampling for high-dimensional imaging problems
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Motivation: SKA’s radio interferometer
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Radio interferometric imaging

Linear observational model

y = Φx+ n

y ∈ CM : Observed Fourier coefficients

n ∈ CM : Observational noise (assumed White and Gaussian)

x ∈ RN : Sky intensity image

Φ ∈ CM×N : Linear measurement operator

− In its simplest case: FFT and Fourier mask

Due to n and Φ the inverse problem is ill-posed

Goal: Estimate x̂ from y
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Uncertainty quantification: more than a point estimate

Based on: Scalable Bayesian uncertainty quantification with data-driven priors for radio
interferometric imaging (Liaudat, et al., 2024)

Image reconstruction: x̂
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Is this blob physical?

→ Is it a reconstruction artefact?

→ Is it backed by the data?

→ Can we base a scientific decision
on this image?

Several reasons motiaves us to develop uncertainty quantification
(UQ) techniques for the reconstruction methods

• Usual UQ techniques from the Bayesian framework rely on
interrogating the posterior exploiting Bayes’ theorem.

For example, Cai et al. (2018a) applies this for radio imaging using a
ℓ1 regularised wavelet-based prior.

Sample from the posterior which is non-smooth to obtain
{x(j)}Kj=1, x

(j) ∼ p(x|y)

→ Proximal MCMC algorithm (Pereyra, 2016) following
Langevin dynamics

Is the problem solved?
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The problem is not solved

Difficulties in the high-dimensional setting:

1. Even if we know the likelihood, applying Φ is computationally expensive

2. Handcrafted priors like wavelets are not expressive enough

3. Sampling-based techniques are prohibitively expensive in this setting

How can we obtain information from the high-dimensional posterior p(x|y) without sampling
from it?

If we restrict to log-concave posteriors something beautiful happens!
→ A concentration phenomenom (Pereyra, 2017)

log-concave posterior p(x|y) = exp[−f (x)− g(x)]/Z → convex potential f (x) + g(x)
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Highest posterior density region

Posterior credible region:

p(x ∈ Cα|y) =
∫
x∈RN

p(x|y)1Cα
dx = 1− α,

We consider the highest posterior density (HPD) region

C∗
α =

{
x : f (x) + g(x)︸ ︷︷ ︸

potential

≤ γα
}
, with γα ∈ R, and p(x ∈ C∗

α|y) = 1− α holds,

Theorem 3.1 (Pereyra, 2017)

Suppose the posterior p(x|y) = exp[−f (x)− g(x)]/Z is log-concave on RN . Then, for any
α ∈ (4 exp[(−N/3)], 1), the HPD region C∗

α is contained by

Ĉα =
{
x : f (x) + g(x) ≤ γ̂α = f (x̂MAP) + g(x̂MAP) +

√
Nτα + N

}
,

with a positive constant τα =
√

16 log(3/α) independent of p(x|y).

We only need to evaluate f + g on the MAP estimation x̂MAP!
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Ĉα =
{
x : f (x) + g(x) ≤ γ̂α = f (x̂MAP) + g(x̂MAP) +

√
Nτα + N

}
,

with a positive constant τα =
√

16 log(3/α) independent of p(x|y).

We only need to evaluate f + g on the MAP estimation x̂MAP!
Tob́ıas I. Liaudat 10



Highest posterior density region

Posterior credible region:

p(x ∈ Cα|y) =
∫
x∈RN

p(x|y)1Cα
dx = 1− α,

We consider the highest posterior density (HPD) region

C∗
α =

{
x : f (x) + g(x)︸ ︷︷ ︸

potential

≤ γα
}
, with γα ∈ R, and p(x ∈ C∗

α|y) = 1− α holds,

Theorem 3.1 (Pereyra, 2017)

Suppose the posterior p(x|y) = exp[−f (x)− g(x)]/Z is log-concave on RN . Then, for any
α ∈ (4 exp[(−N/3)], 1), the HPD region C∗

α is contained by
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MAP-based uncertainty quantification

Cai et al. (2018b)

UQ techinques:

• Hypothesis test with significance α

▶ e.g. with respect to a surrogate image
with an inpainted structure.

• Local credible intervals (LCI)

▶ Test the approx HPD region for each
pixel or super-pixel in the image.

• Fast pixel-wise errors at different scales

▶ Test the approx HPD region from the
coefficients of a multi-resolution
decomposition of the image.
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Scalable Bayesian uncertainty quantification

1. Scalability → Need to rely on optimisation sampling, use the MAP estimator

2. Uncertainty quantification → Need the potential to be convex and explicit

3. Good reconstruction → Need to use data-driven (learned) approaches

The approach requires our prior to be convex and with an explicit potential

We constrain our prior to be convex, but we gain an effortless UQ!
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Learned convex regulariser

We use the neural-network-based convex regulariser R from Goujon et al. (2023), where

R : RN 7→ R, R(x) =
NC∑
n=1

∑
k

ψn ((hn ∗ x) [k]) ,

- ψn are learned convex profile functions with Lipschitz continuous derivate

- Learnable 2nd degree splines

- There are NC learned convolutional filters hn

- R is trained as a (multi-)gradient step denoiser

Properties:

1. Explicit cost

2. Convex

3. Smooth regulariser with known Lipschitz constant
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Numerical experiments

RI imaging models:

Model from Cai et al. (2018a): x̂MAP = argmin
x∈RN

∥y −Φx∥22/2σ2 + λ1∥Ψ†x∥1 + ιRN (x) ,

Proposed model: x̂MAP = argmin
x∈RN

∥y −Φx∥22/2σ2 + λ2/µRθ(µx) + ιRN (x) ,

MAP estimations are computed using the FISTA algorithm

Validation of the UQ is done by sampling both posterior distributions using a proximal MCMC
algorithm, SK-ROCK (Pereyra et al., 2020)

Experiment settings:

• Image size 256× 256

• Input SNR of 30dB

• Gridded Fourier sampling: 10% coverage from a Gaussian distribution (M ≈ 6.5× 103)

• Wavelets used: Daubechies 8

Tob́ıas I. Liaudat 14



Numerical experiments

RI imaging models:

Model from Cai et al. (2018a): x̂MAP = argmin
x∈RN

∥y −Φx∥22/2σ2 + λ1∥Ψ†x∥1 + ιRN (x) ,

Proposed model: x̂MAP = argmin
x∈RN

∥y −Φx∥22/2σ2 + λ2/µRθ(µx) + ιRN (x) ,

MAP estimations are computed using the FISTA algorithm

Validation of the UQ is done by sampling both posterior distributions using a proximal MCMC
algorithm, SK-ROCK (Pereyra et al., 2020)

Experiment settings:

• Image size 256× 256

• Input SNR of 30dB

• Gridded Fourier sampling: 10% coverage from a Gaussian distribution (M ≈ 6.5× 103)

• Wavelets used: Daubechies 8

Tob́ıas I. Liaudat 14



Numerical experiments

RI imaging models:

Model from Cai et al. (2018a): x̂MAP = argmin
x∈RN

∥y −Φx∥22/2σ2 + λ1∥Ψ†x∥1 + ιRN (x) ,

Proposed model: x̂MAP = argmin
x∈RN

∥y −Φx∥22/2σ2 + λ2/µRθ(µx) + ιRN (x) ,

MAP estimations are computed using the FISTA algorithm

Validation of the UQ is done by sampling both posterior distributions using a proximal MCMC
algorithm, SK-ROCK (Pereyra et al., 2020)

Experiment settings:

• Image size 256× 256

• Input SNR of 30dB

• Gridded Fourier sampling: 10% coverage from a Gaussian distribution (M ≈ 6.5× 103)

• Wavelets used: Daubechies 8

Tob́ıas I. Liaudat 14



MAP reconstructions
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SNR = 3.39 dB SNR = 23.05 dB SNR = 26.85 dB

Improved the reconstruction by 3.8 dB

Tob́ıas I. Liaudat 15



Posterior standard deviation

Computed using 104 samples obtained from the sampling algorithm SK-ROCK (Pereyra et al.,
2020)
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More meaningful uncertainties in the posterior Std Dev
The learned convex regulariser was trained on natural images, not RI images
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Computing time and likelihood evaluations

Computation wall-clock times for the W28 image in seconds.

Models
MAP Posterior LCIs Fast
optim. sampling 8× 8 pixel UQ

Wavelet-based 0.94 36.0× 103 149.7 —
QuantifAI 0.64 6.44× 103 108.2 0.17

The number of measurement operator evaluations used by QuantifAI for the W28 image.

MCMC LCIs LCIs Fast
sampling 8× 8 16× 16 pixel UQ

11× 106 81.5× 103 21.2× 103 28

The fast pixel UQ is 106 and 103 times faster than the MCMC sampling and LCIs, respectively.
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A more realistic experiment

Simulate single frequency MeerKAT ungridded visibility patterns

- Start frequency of 1400MHz with a channel width of 10MHz

- Pointing: J2000, RA=13h18m54.86s, DEC=-15d36m04.25s

1h 2h 4h 8h

M ≈ 3× 104 M ≈ 6× 104 M ≈ 1.2× 105 M ≈ 2.4× 105

We use forward operator based on a torch-based 2D NUFFT with Kaisser-Bessel gridding.
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A more realistic experiment

Results for 8h of observation time (M ≈ 2.4× 105). MAP reconstruction SNR: 28.56dB
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Computation wall-clock time: MAP estimation → 137.0s, fast pixel UQ → 1.84s
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Conclusions

• Scalable uncertainty quantification

▶ We exploit a concentration phenomenon of log-concave posteriors
▶ Focus on hypothesis test and pixel-wise errors at different scales

• Only rely on optimisation to compute the MAP and avoid sampling

• We used learned convex regularisers

▶ Decreased reconstruction errors and improved quality of the posterior Std Dev
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Conclusions

Ongoing work with colleagues at UCL (UK) to

• Interface QuantifAI with PURIFY (realistic RI forward operator) and SOPT (performant
and parallel convex optimisation routines),

• Implement & benchmark QuantifAI on a massively parallelised computing env.

Codes:

• QuantifAI github.com/astro-informatics/quantifai

• PURIFY github.com/astro-informatics/purify

• SOPT github.com/astro-informatics/sopt

We rely on an iterative algorithm for the optimisation, which can be computationally
expensive

• We need to decrease the number of iteration to further accelerate
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Faster reconstruction: algorithm unrolling

Based on: EVIL-Deconv: Efficient Variability-Informed Learned Deconvolution using
Algorithm Unrolling (Kern, Kervazo & Bobin, 2024 (submitted))

Main motivation:

1. Reduce the number of iterations!

2. Improve reconstruction performance

The main algorithm step which is unrolled for L steps

xl+1 = gl(xl +Φl(M)(y −M ∗ xl))

• Φl(M) : Learned preconditioning step based on CNNs with M being the PSF

• gl : Learned proximal operator (denoiser) based on DRUNets

Everything trained on a supervised manner end-to-end for th L unrolled steps.
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Faster reconstruction: algorithm unrolling

EVIL-Deconv results:

• Greatly reduced computation budget

• Great reconstruction quality (for in-distribution data)

EVIL-Deconv drawbacks:

• Lost interpretation of the reconstruction

▶ Is it the fixed point of an equation?
▶ Is the reconstruction related to a posterior probability distribution?

• UQ is missing

These drawbacks limit its scientific application
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CARB: Conformalized Augmented Radio Bootstrap

Based on: Uncertainty quantification for fast reconstruction methods using augmented
equivariant bootstrap: Application to radio interferometry
(Cherif, Liaudat, Kern, Kervazo & Bobin, 2024 (submitted))

Based on the equivariant Bootstrap framework of Tachella & Pereyra (2024)

Given an observation model y = Ax + n (e.g. RI imaging), group actions {Tg}g∈G such that
Tgx ∈ X and a reconstruction method x̂(y) = f (y) (e.g. EVIL-Deconv):

For i = 1, . . . ,N:

1. Draw transform gi from G and sample noise ni ∼ N (0, σ2I )

2. Build bootsrap measurement ỹi = ATgi x̂(y) + ni = Agi x̂(y) + ni

3. Reconstruct x̃i = T−1
gi x̂(ỹi )

4. Collect error estimate ei = ∥x̂(y)− x̃i∥2
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CARB: Conformalized Augmented Radio Bootstrap

Motivation:

• Unsupervised method → No ground truth required

• Independent of the reconstruction method and each sample can run in parallel

• Well-suited to ultra-fast reconstruction methods, e.g. unrolled algorithms

• Carefully selected group transforms allow us to explore the big nullspace of the RI
imaging forward operator and better characterise the errors

CARB method consists of:

1. Fast reconstruction algorithm (EVIL-Deconv)

2. Equivariant bootstrap framework

3. Adapted group actions for the RI imaging problem

4. Conformalisation procedure to guarantee coverage
from Angelopoulos and Bates, 2023

Examples of filter transformations:
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CARB: Conformalized Augmented Radio Bootstrap

Uncertainty quantification performance comparison
(90% confidence interval)

Method Length Coverage

Quantile Regression (QR) 0.15 14%
Conformalized QR 204.08 92%
Parametric Bootstrap 0.07 0%
Equivariant Bootstrap 0.13 7%
Augmented Radio Bootstrap 0.29 87%
CARB 0.34 91%

Coverage plots for equivariant bootstrap
methods with different group actions.
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Tight intervals and very good coverage! Results showcase:

• the importance of selecting adapted group actions,

• the conformalisation is useful once the intervals are already good.

We still need to validate the method on higher dimensions.Tob́ıas I. Liaudat 27



Bonus: Can we go even faster?

Based on: Generative imaging for radio interferometry with fast UQ
(Mars, Liaudat, Whitney, Betcke & McEwen, 2024 (in prep.))

Based on the regularised conditional GAN (rcGAN) proposed in Bendel et al., 2023 that is able
to generate approximate posterior samples

Main points of the proposed approach:

• Builds from the Wasserstein conditional GAN (Adler and Öktem, 2018)

• Regularisation to avoid mode collapse and reward sample diversity.

• Under simplifying assumptions, the first two moments of the approximated posterior
(mean and covariance) match the true posterior.

• We condition on the dirty image and the PSF.

• Extremely-fast reconstruction and sampling.
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Regularised conditional GAN for RI imaging and fast UQ
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Regularised conditional GAN for RI imaging and fast UQ

Reconstruction of simulated MeerKAT observation of galaxies from Illustris TNG simulations.

High reconstruction PSNR and good correlation between the oracle error and the Std Dev.

A deeper validation of the produced samples is yet to be done.
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Conclusions

Explored different reconstruction methods with UQ for radio interferometric imaging exploiting
different ML/AI tools:

1. In a Bayesian framework, favour optimisation and avoid sampling by approximating the
HPD region while using learned data-driven priors

2. Accelerate reconstruction with algorithm unrolling but lose interpretability

3. The CARP method picks up the unrolled method and provides UQ in an unsupervised
framework based on equivariant bootstrap

4. The regularised conditional GAN trained on a supervised manner allows us to do instant
(approximate) posterior sampling
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Outline

1. Fast and scalable UQ for radio interferometric imaging: Towards SKA
▶ QuantifAI: Bayesian model with convex data-driven priors
▶ EVIL-Deconv: Fast reconstruction through algorithm unrolling
▶ CARB: unsupervised UQ for fast unrolled models
▶ Approximate posterior sampling with rcGANs

2. What data-driven prior should I use for my problem?
▶ Nested sampling for high-dimensional imaging problems
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Point estimates and priors

Which prior should we use?

• For some low-dimensional problems it can be simple to select the prior:

▶ Physics informed priors (e.g. mass constrained to be positive)
▶ Uninformative priors (e.g. invariance to certain symmetry)
▶ Data-informed priors (e.g. old data as prior and likelihood on new data)

• For high-dimensional imaging problems it is hard:

▶ For example, encode that x ∈ X with X being a large and complex set of images,
i.e. galaxy images, natural images, or MRI brain scans.

▶ How to describe such a set?

→ Informative priors: e.g. sparse in a given wavelet dictinoary

→ Data-driven priors: e.g. machine learning models, generative AI
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On priors

More recently, data-driven priors encoded by deep neural networks (NN) have emerged like
Plug-and-Play (based on deep learning-based denoisers), or diffusion models.

Train the NN on samples from the true X ∼ p(x) (i.e. dataset of examples of x ∈ X )

In scientific settings,

• We do not have access to ground truth.

• Which NN prior to use for our scientific scenario? We base the choice on which metric?

Work based on:
Proximal nested sampling for high-dimensional Bayesian model selection
(Cai, McEwen, & Pereyra, 2022)
Proximal nested sampling with data-driven priors for physical scientists
(McEwen, Liaudat, Price, Cai & Pereyra, 2023)
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Bayesian model selection

Using Bayes theorem for model Mj :

p(Mj | y) =
p(y | Mj)p(Mj)∑
j p(y | Mj)p(Mj)

.

For model selection, consider the posterior model odds :

p(M1 | y)
p(M2 | y)︸ ︷︷ ︸
posterior odds

=
p(y | M1)

p(y | M2)︸ ︷︷ ︸
Bayes factor

× p(M1)

p(M2)︸ ︷︷ ︸
prior odds

To compute the bayes factor we need to comute the Bayesian model evidence or marginal
likelihood given by

Z = p(y | M) =

∫
dx L(x)π(x)

Extremely challenging computational problem in high-dimensions.
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Occam’s razor

The Bayesian model evidence naturally incorporates Occam’s razor, trading off model
complexity and goodness of fit.

• In Bayesian formalism models specified as
probability distributions over datasets.

• Each model has limited “probability
budget”.

• Complex models can represent a wide
range of datasets well, but spreads
predictive probability widely.

• In doing so, model evidence of complex
models penalised if complexity not
required.
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Nested sampling: reparameterising the likelihood

Nested sampling is ingenious approach to evaluate the evidence (Skilling 2006).

Consider ΩL∗ = {x |L(x) ≥ L∗}, which groups the parameter space
Ω into a series of nested subspaces.

Define the prior volume ξ within ΩL∗ by ξ(L∗) =
∫
ΩL∗

π(x)dx .

The marginal likelihood integral can then be rewritten as

Z =

∫ 1

0

L(ξ)dξ,

which is a one-dimensional integral over the prior volume ξ.
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Nested sampling: constrained sampling

Require strategy to compute likelihood level-sets (iso-contours) Li and corresponding
prior volumes 0 < ξi ≤ 1.

Nested sampling (Skilling 2006)

1. Draw Nlive live samples from prior, with prior volume ξ0 = 1.

2. Remove sample with smallest likelihood, say Li .

3. Replace removed sample with new sample from the prior but constrained to a

higher likelihood than Li .

4. Estimate (stochastically) prior volume ξi enclosed by likelihood level-set Li .

5. Repeat 2–5.
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Proximal nested sampling

Main difficulty: Sampling from the prior, subject the likelihood iso-contour constraint.

Advantage: Apart from the evidence we can do posterior inferences by assigning importance
weights.

Proximal nested sampling

• Constrained sampling formulation

• Langevin MCMC sampling

• Moreau-Yosida approximation of constraint (and any non-differentiable prior)

• Limited to classic non-smooth priors

Proximal nested sampling Markov chain:

x (k+1) = x (k) +
δ

2
∇ log π(x (k))− δ

2λ

[
x (k) − proxχBτ

(x (k))
]
+
√
δw (k+1).
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Proximal nested sampling intuition

Recall proximal nested sampling Markov chain (from previous slide):

x (k+1) = x (k) +
δ

2
∇ log π(x (k))− δ

2λ

[
x (k) − proxχBτ

(x (k))
]

+
√
δw (k+1).

1. x (k) is already in Bτ : term
[
x (k) − proxλχBτ

(x (k))
]

disappears and recover usual Langevin MCMC.

2. x (k) is not in Bτ : a step is also taken in the
direction −

[
x (k) − proxλχBτ

(x (k))
]
, which moves the

next iteration in the direction of the projection of
x (k) onto the convex set Bτ . Acts to push the
Markov chain back into the constraint set Bτ if it
wanders outside of it.
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Likelihood

constraint set
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x(k)
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x(k−2)
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Tweedie’s formula

Score matching and denoising diffusion models achieve state-of-the-art performance in
deep generative modelling.

Tweedie’s formula

Consider noisy observations z ∼ N (x , σ2I ) of x sampled from some underlying prior π(x).
Tweedie’s formula gives the posterior expectation of x given z as

E(x | z) = z + σ2∇ log p(z),

where p(z) is the marginal distribution of z .

• Can be used to relate a learned denoiser Dσ (MMSE estimator) to the score ∇ log p(z).

• p(z) is a regularised version of the target prior probability π(x), i.e. πσ(x)

By Tweedie’s formula the score of the regualised prior related to the learned denoiser by

∇ log πσ(x) = σ−1(Dσ(x)− x).
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Proximal nested sampling with learned data-driven priors

Substituting the denoiser ∇ log πϵ(x) = ϵ−1(Dϵ(x)− x) into the proximal nested sampling

Markov chain update:

x (k+1) = x (k) − δα

2ϵ

[
x (k) − Dϵ(x (k))

]
︸ ︷︷ ︸

Prior term

− δ

2λ

[
x (k) − proxχBτ

(x (k))
]

︸ ︷︷ ︸
Likelihood constraint term

+
√
δw (k+1) .
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Hand-crafted vs data-driven priors

Consider simple galaxy denoising inverse problem with:

▷ hand-crafted prior based on sparsity-promoting wavelet representation;

▷ data-driven priors based on a deep neural networks
(Goujon et al., 2023 Ryu et al., 2019).

Which model best?

▷ PSNR ⇒ data-driven priors best but require ground-truth;

▷ Bayesian evidence ⇒ data-driven priors best (no ground-truth knowledge).
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Summary

▷ Proximal nested sampling (arXiv:2106.03646) framework scales to high-dimensions,
opening up Bayesian model comparison for, e.g., imaging problems.

▷ Constrained to log-convex likelihoods, which are ubiquitous in imaging sciences (e.g.
Gaussian likelihood).

▷ Prior not constrained to be log-convex so can be a deep neural network.

▷ Recently developed learned proximal nested sampling (arXiv:2307.00056) approach to
support data-driven priors exploiting Tweedie’s formula.

▷ We can now compare different data-driven priors for our high-dimensional imaging inverse
problems.
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