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Inverse problems (1/2)

2

Super-resolution

Sparse view tomosynthesis

Deconvolution



Inverse problems (2/2): source separation
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(earth monitoring)



BSS: Linear model [Comon10]
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Goal of BSS : estimate A* and S* from X

X   : m rows observations and t samples columns (m x t) 
A* : mixing function  (m x n) 

 : abundance of the kth material in the ith pixel 
N   : noise and model imperfections (m x t)
s*ik ∈ ℝ

X = A⇤S⇤ +N

(up to limited indeterminacies)
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Classical methods: sparse source separation [Zibulevsky01]
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Infinite number of possible (non-physical) solutions 
     => ill-posed problem requiring to introduce additional priors: ICA [Comon10], NMF [Gillis14], 
sparsity… + deep-learning extensions

Sparse source separation as an optimization problem [Zibulevsky01]:

 : regularization hyper-parametersλ1, . . . , λn

Data-fidelity

Challenges: 
- Non-smooth (use proximal operators [Parikh14]) 
- Non-convex (non-unique minima) 
- Difficult hyperparameter / prior choice

argmin
A∈ℝm×n,S∈ℝn×t

1
2

∥X − AS∥2
F +

n

∑
i=1

λi∥Si∥1 + ι{i∈[1..n];∥Ai∥2
2≤1}(A)

Sparsity Oblique

X = A*S* + N = A*P−1PS* + N = ÃS̃ + N with  and Ã = A*P−1 S̃ = PS*



Classical methods: optimization + handcrafted « automatic » parameter choice
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PALM [Bolte14]

While not converged over  and  do:A S

Si ← 𝒮ηλi (S − η (ASi − Xi))
A ← Π∥.∥2≤1 (A − ξ (AS − X))

with: 
-  the soft-thresholding 
-  the projection on the unit  sphere 
-  some gradient step-sizes

𝒮
Π∥.∥2≤1( . ) ℓ2
η, ξ

for i = 1..n :

Initialize  and A S

 : regularization hyper-parametersλ1, . . . , λn

Data-fidelity

argmin
A∈ℝm×n,S∈ℝn×t

1
2

∥X − AS∥2
F +

n

∑
i=1

λi∥Si∥1 + ι{i∈[1..n];∥Ai∥2
2≤1}(A)

Sparsity



Limitations
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- The hyperparameter choice is often handcrafted 
- PALM takes several thousand iterations to converge => slow for large datasets

• If we have access to a data base with examples of mixtures and the corresponding 
factors A* and S*, can we obtain better separation results by introducing some learnt 
components within PALM? 

• It corresponds to algorithm unrolling 

=> enables to bypass the cumbersome hyper-parameter choice 
=> much more computationally efficient than PALM 
=> yield interpretable neural networks 

• We first apply it in astrophysics, and then to earth monitoring 

Deep learning alternative approach



GDR MIA Plug-and-Play workshop

Algorithm unrolling: methodology
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• Going back to PALM

with  the algorithm parameters 
(gradient step sizes…)

θ

• Algorithm unrolling truncates this scheme to rewrite it in the form of a neural network with a 
small number of layers (iterations):

• The algorithms parameters  becomes trainable on a training set (i.e. they becomes the 
weights of the neural network) 

• The number of iterations  is usually much smaller than in the original algorithm

θ(k)

L

S ← 𝒮 λ
LS (S −

1
LS

AT(A*S − X))

It can be sketched as: X Sfθ(A)

 updateA

while not converged do:

Update A

X Sf (1)
θ1

(A) f (2)
θ2

(A) f (3)
θ3

(A) f (L)
θL

(A)…
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Being more specific: LISTA algorithm
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• Further possible to learn a reparametrization of the update [Gregor, Lecun 10]

S ← 𝒮 λ
LS

(W1S +W2X)
Θ = {λ /LS, W1, W2}

LISTA update

S ← 𝒮 λ
L (S −

1
L

AT(AS − X)) S ← 𝒮 λ
L ((I −

1
L

ATA) S +
1
L

ATX)⇔

learning some parts of the update

• In LISTA-CP [chen18], the theoretical coupling of  and , leading to the update:W1 W2

LISTA-CP takes into account the relationship between  and  => better empirical 
results

W1 W2☺
☹ LISTA-CP requires an estimate of A

S ← 𝒮 λ
LS

(W1S +W2X)
(LISTA update)

S ← 𝒮 λ
LS

(S − WT(AS − X))
(LISTA-CP update)

☹ No use of the theoretical link between  and W1 W2

Much faster than merely learning the hyperparameters☺

W1 W2
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Unrolling PALM
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• The way to unroll PALM was chosen according to the previous remarks and experimental 
trials :

(LISTA-CP update)

(learning step-size)

• The loss function is chosen as

NMSE(A, A*) + NMSE(S, S*)

for k from 1 to L do :

end for

return A, S

initialize A and S with a very generic initialization

over the training set.

Learned-PALM (LPALM) [Fahes22]

S ← 𝒮γ (S − WT(AS − X))
A ← Π∥.∥≤1 (A +

1
LA

(X − AS)ST)
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Numerical experiments: datasets
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• Test set:
 with:X = A*S* + N

A*

• A* coming from realistic simulations
• S* being real supernovae maps (reshaped into vectors)
• N generated Gaussian noise

S*

• Train set:
750 samples of  with:iX = iA*iS* + iN
•  coming from realistic simulations (quite different from the test 

set)

iA*

•  generated using a Bernouilli Generalized-Gaussian 
distribution
iS*

•  generated Gaussian noiseiN
 for . Each column 

is represented with a different 
color

iA* i = 1..50

LPALM is tested on astrophysical simulations of the Cassiopea A supernovae remnant as 
observed by the X-ray telescope Chandra. There are  emissions: synchrotron, thermal 
and 2 red-shifted irons

n = 4



GDR MIA Plug-and-Play workshop

Numerical results: comparison with PALM
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Blue, plain and dashed lines: median number of iterations for PALM 
and LPALM, respectively

Red, plain and dashed lines: median NMSE for PALM and LPALM, 
respectively

LPALM is compared with PALM, by optimizing PALM parameters over the train set:

LPALM largely outperforms PALM, both: 
- in terms of separation quality 
- in terms of number of iterations
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Numerical results: comparison with other unrolled methods
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 S*

S*

LPALM largely outperforms its competitors: 
- LISTA lacks of flexibility to handle varying  matrices 
- DNMF suffers from a training using the reconstruction error only: , which is 

well-known to lead to spurious solutions

iA*
∥iX − iAiS∥2

2



Présentation DAG

LPALM for earth observation: a self-supervised approach
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- A major limitation of LPALM for earth observation is that it requires some datasets with 
ground-truths  and  for training, which is difficult to obtain in earth observation 

- In addition, in earth observation,  is non-stationnary over the image (so-called spectral 
variabilities)

A* S*

A*

Proposed approach [Hadjeres24]: from the considered hyperspectral image to unmix, we generate 
several synthetic images with ground-truths to train LPALM. Furthermore, we leverage spectral 
variability to increase the diversity in the synthetic training set.
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Training LPALM in a fully unsupervised way
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- Launch several time a randomized model-based unsupervised spectra extraction algorithm, VCA, to 
extract different examples of pure material spectra. 

- Spectral data-augmentation: a piecewise-linear model-based based perturbation [Thouvenin15] is 
applied to augment the extracted endmember library. We obtain several (i)A*, i = 1..Ntrain

Synthetic spectra  generation :(i)A*

- Compute , estimate  by nonnegative least squares:  

- Model  by a mixture of Dirichlet  
- Draw new samples  following the mixture of Dirichlet distribution.

Aref = MEAN
i=1..Ntrain

((i)A*) Sref argmin
Sref≥0

1
2

∥X − Aref Sref∥2
F

Sref
(i)S*, i = 1..Ntrain

Synthetic abundances  generation :(i)S*

Data generation : using the  and  generated above, compute new datasets:(i)A* (i)S*

=> for the  dataset, the groundtruth  and  is known!(i)X̃ (i)A* (i)S*

(i)X̃ = (i)A*(i)S* + (i)N



Présentation DAG

Training LPALM in a fully unsupervised way
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(1)X̃

(2)X̃

…

(Ntrain)X̃

LPALM

X

First estimates through VCA Synthetic data generation LPALM training

NN-LS

Average

VCA

…

Piecewise linear 
perturbation

Piecewise linear 
perturbation

Piecewise linear 
perturbation

Dirichlet mixture 
sampling

(i)A, i = 1..NVCA

Sref

(i)S*,
i = 1..Ntrain

(i)A*, i = 1..Ntrain

(i)A*, (i)S*
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Results on the Samson dataset
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VCA SNPA DNMF-net SNMF-net CNNAEU LPALM

Spectral Angular Distance (SAD)

Soil

Tree

Water

Soil

Tree

Water



Unrolled Nonnegative 
Matrix Factorization
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Limitation of LPALM
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S ← 𝒮γ (S − WT(AS − X))
A ← Π∥.∥≤1 (A +

1
LA

(X − AS)ST)
(LISTA-CP update)

(learning step-size)

for k from 1 to L do :

end for

return A, S

initialize A and S with a very generic initialization
Learned-PALM (LPALM) [Fahes22]

A limitation of LPALM:  
- the learnt parameters are the same for all the training samples 
- once the parameters are learnt on the training set, they are fixed 

=> LPALM is not very adaptative to diversity in the training and test set
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Nonnegative matrix factorization (NMF) and Multiplicative Updates
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Data-fidelity

argmin
A∈ℝm×n,S∈ℝn×t

1
2

∥X − AS∥2
F + ι.≥0(A) + ι.≥0(S)

Nonnegativity

In the following, we will consider another type of regularization than sparsity:

A classical algorithm to minimize it is the Multiplicative Update (MU) [Lee,Seung1999]

A(l+1) ← A(l) ⊙
XS(l)T

A(l)S(l)S(l)T

S(l+1) ← S(l) ⊙
A(l+1)TX

A(l+1)TA(l+1)S(l)
.

while not converged:
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Nonnegative matrix factorization (NMF) and Multiplicative Updates
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To speed up MU, we can unroll it => Non Adaptative Learned Multiplicative Update (NALMU) 

Motivation of the new update: 
-  acts as a mask 
- Its is easier to perform learning on 

WA
A

But at this stage, NALMU suffers from the same flaw as LPALM:  is fixed once for allWA
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Nonnegative matrix factorization (NMF) and Multiplicative Updates
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To make learned MU more adaptative, we rather proposed the Adaptative Learned Multiplicative 
Updates (ALMU)

Motivation of the new update: 
-  is now specific for each new entry  
- In practice, it is parametrized with a small MLP 
- Predicting it from  enables to reduce the computational burden

WA X

ANALMU
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Results
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Kervazo, C., Chetoui, A., & Cohen, J. E. Deep unrolling of the multiplicative updates algorithm for blind source 
separation, with application to hyperspectral unmixing.
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Conclusion
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Take-home messages: 

- Unrolling is a very flexible tool for inverse problems 

- It has a much smaller of parameters to train than black-box neural networks and is much 
more scalable than iterative algorithms 

- It is more interpretable than black-box neural networks 

- We proposed adatative-to-the-dataset schemes
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