Learning subgrid-scale models for turbulent rotating convection:

towards realistic timescales simulations

Workshop " Artificial Intelligence for HPCOExascale”

Hugo Frezat  Alexandre Fournier =~ Thomas Gastine
October 2, 2024



Introduction Designing learning strategies for stable simulations State-based learning in the annulus Conclusion
@000 0000000000000 000 00000000 [e]e]

Turbulent components of Earth systems

In geophysical systems:
e Ocean: mixing, boundary layers.
e Atmosphere: convection, clouds, gravity waves.
e Earth’s core: geodynamo.
Turbulent state:
e Large range of structures.
e Non-linear interactions.
e Chaotic: sensitive to initial conditions.
In simulations:

e Governed by Navier-Stokes equations (fluid

motion), and induction (magnetic field).

Sub-mesoscale permitting, cloud-resolving and ) . i
geodynamo (credits: N. Schaeffer) simulations. e Discretized on a grld. 1
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Computational limitations: hybrid modeling

Direct numerical simulation (DNS): Crid domain and _
rid domain and spacing:

‘?% = f(y) e Not reachable in realistic

scenarios.
Reduced equations (LES):
e Universal small-scale dynamics.
e Applying projection T (y) =¥.
e Typically using a filter.
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Grids on domain length L and corresponding energy spectrum.
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Computational limitations: hybrid modeling

Direct numerical simulation (DNS):
Grid domain and spacing:

aa—)t’ = f(y) e Not reachable in realistic
scenarios.
Reduced equations (LES):
e Universal small-scale dynamics.
e Applying projection T (y) =¥.
e Typically using a filter.
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Grids on domain length L and corresponding energy spectrum.
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Machine learning in physical sciences

Subgrid modeling in physics:
e Open-problem (1963-.).

e Models designed from well-known
functions (PDEs).

Scientific Machine Learning (SciML):
Recent field (~2018-.).

Parametric functions (neural networks
for e.g.).

Models designed as a supervised
learning problem.

Using data from DNS.

Predicting the subgrid term using machine learning is a
regression problem.
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Outlines

1. Designing learning strategies for stable simulations

Ideal domains: uniform grid and periodic boundary conditions.

2. State-based learning in the annulus

Not so ideal domains: non-uniform grid and rigid boundary conditions.

4. Conclusion
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Designing learning strategies for stable simulations

1. Designing learning strategies for stable simulations

2. State-based learning in the annulus

4. Conclusion
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Subgrid-scale challenges in QG dynamics

Example: quasi-geostrophic turbulence

Ow + J = V2w — pw — o) F
ot T w) = V- g — B0+ F
advection diffusion drag latitude variation ~ forcing
A simplified rotating geophysical surface system:
e Vorticity equation.
e Two-dimensional.

e 1 layer.

O+ J(h, @) = vV%0 — p@ — Bopp + F + J(, @) — J(1h, w)

Tw Example of reduced vorticity and SGS
term.
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Subgrid-scale challenges in QG dynamics

Potential difficulties:

e Accumulation of
small-scale energy:
numerical
instabilities.

e Incorrect
representation of
the unresolved
dynamics.

Difficulties in SGS modeling for two-dimensional turbulent systems.
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State of the art: historical
"Historical” — or physical turbu-  Potential difficulties:
lence models (Sagaut, 2006): e Accumulation of small-scale energy: numerical
e Mathematical developments instabilities.
(Clark et al., 1979): Structural. e Incorrect representation of the unresolved
dynamics.
Structural
Stability -
Forward +
Backward +

Difficulties in SGS modeling for two-dimensional turbulent systems.
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State of the art: historical

"Historical” — or physical turbu-  Potential difficulties:
lence models (Sagaut, 2006):

e Mathematical developments
(Clark et al., 1979): Structural. o Incorrect representation of the unresolved

e First principles (Smagorinsky, dynamics.
1963, Leith, 1996): Functional.

e Accumulation of small-scale energy: numerical
instabilities.

Structural Functional

Stability - +
Forward + -
Backward + -

Difficulties in SGS modeling for two-dimensional turbulent systems. 5
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State of the art: machine learning

Current models:

e Exclusive on stability and correct
transfers.

e Machine learning as an alternative
(Brunton et al., 2020).

Solving a pr0b|em from data: Lr}‘i,tizloizp))feriments on two-dimensional turbulence (Maulik et
e Inputs y.
e Output 7. Structural  Functional ML
e Model M :y — 7. Stability - + _
Forward + - 4+
e "Static”. Backward + - 4+
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Numerical setup

Numerical solver g:

e Pseudo-spectral (Fourier
doubly periodic).

e Cutoff filter (wavenumbers
truncation).

e DNS 20482, reduced 1282,
e S = 3000 samples.
Learning models:

e From literature (not detailed
here).
e Equivalent NN

Data generation pipeline. architectures.
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Turbulence evaluation metrics

a priori metrics a posteriori metrics

Prediction of the simulation’s trajectory over

a temporal horizon.

Prediction of the missing term on a fixed

time-step.
-3
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Instantaneous subgrid contribution. Temporal evolution of kinetic energy.
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a priori learning

Instantaneous (classical) loss

L= (UM, @), 7)),

e Optimize only on the next temporal
increment ¢ + At.

e Not perfect: errors can either lead to
stable or unstable predictions.

Instantaneous loss computation.
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a priori learning

a priori turbulence " metrics” (Pope,
2000)

gprio L= (M(dj)a}) - TUJ)2

Squared error

gprio L= Tw(logTw - M(J)vw))

KL divergence

e "Optimal” in a priori evaluations.

e Improved (non-interpretable) structural

Instantaneous loss computation. model.
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a posteriori learning

a posteriori loss

L= (U(Yprea(t), ¥ (1)) ¢
ypred = {a}pred7 ’(Z)predﬂ M}
y = {w7 w7 Tw}

e Temporal component in loss function.

e Required to form a continuous
trajectory.

e Allows for a larger class of evaluation
metrics (encompass a priori if [t| =1
and loss onIy uses Tw). Temporal loss computation.
10
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a posteriori learning

a posteriori turbulence "metrics” (Pope,
2000)

loost : = Eprea(k) — E(k) : statistical
—

Energy spectrum

Cpost + = (Wprea(t) — T(W(t)))z : local

Vorticity squared error

e "Optimal” in a posteriori evaluations.

e Depends on the temporal horizon t

(|imited, here M = 25) Temporal loss computation.
10
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a posteriori learning: in practice

Optimizing for future
quantities:

e Same (resolved) initial
conditions.

e Perform temporal
integrations during
training (M discrete
timesteps).

o Target fields can be Visual sketch of an a posteriori training on one trajectory.

pre-computed.

11
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Technical bits

Gradient-based mathematical optimization:
for M(y|0) : arg m@inﬁ involves 6,,.1 = 0,, — yVoL

a priori loss gradient: a posteriori loss gradient:

v9€p0st (ypred (t) ) y(t))

v(fgprio (Mv Tw)
Ol 07, Dyrio IM _ Olpost 0y Olpost OYprea
r, 99 ' OM 00 Oy 00 " OYprea OO
_ EMprio % aepost ! 89 8M /
8./\/1 a0 B aypred ( to % * W & )

a priori vs a posteriori: losses 1
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Technical bits

Gradient-based mathematical optimization:

for M(y |0) : arg m@inﬁ involves 0,11 = 0, — YV L

a priori loss gradient:

Vngrio (M7 Tw)
o 8gprio % + aZprio aM

or, 00 oM 00
o 8£pri0 %
- OM 08

a priori vs a posteriori: losses

a posteriori loss gradient:

Volpost (Fprea(t), y(t))
o 8ﬂpost 07)’ 8épost 8ypred
9y 90 OFprea 09

_ agpost /t @ + aﬂ dt/
O pred to \0/9_/ a0

Not available

12
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a posteriori learning: implementation

State-based learning in the annulus Conclusion
00000000 00

Gradient of the solver w.r.t. model pa-
rameters:

e Estimates using numerical derivatives.
e Manually implement adjoint.
e Automatic generation tools.

e Implementation using
auto-differentiation languages or
libraries.

e Deep Differentiable Emulators (Frezat
et al., 2024, Nonnenmacher and
Greenberg, 2021, Hatfield et al., 2021)

Gradient-free methods: not explored but
active field.

a posteriori loss gradient:

alépost /t 89 + % df’
to

a}_’pred \a@ o0

Not available

Differentiable programming libraries in Julia

and Python.
13
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Numerical experiments

Decaying turbulence (McWilliams, Forced turbulence (Graham et al., Beta-plane on topography ( Thompson,
1984) 2013) 2009)

14
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Numerical experiments: decaying turbulence

Forced turbulence Beta-plane on topography
(Graham et al., 2013) (Thompson, 2009)

Decaying turbulence (McWilliams, 1984) 15
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Numerical experiments: decaying turbulence

Energy (left) and enstrophy (right) in decaying turbulence.

[} [}
1 1
: = 1 : : === M DNS
0.09 4 - 2511 1 M]\I:QS
: ! —_— : : aposteriori
| -——- M | 1
0.08 1 ];INST 20 ; — Mapriosi
=\ ! —_— AFa0 | [a\] | 1
~— : M apasteriori ~ : ! M Smagorinsky
P ] T~ ]
[} 0.07 : M apriori )] 15 : 1
=] | 3 | 1
~ 0.06 : M Smagorinsky ~ 10 : :
.06 11 14
: M Leith : :
[} ' [} 1
41 1 41 1 —_—
0.05 : : 5 : : ===
[} 1 [} 1
[} 1 [} 1
0.04 +— T b T ; ; r 0+ T b T ; ; T
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Unsteady generalization 3 times larger than training horizon. 15
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Numerical experiments: forced turbulence

Decaying turbulence Beta-plane on topography
(McWilliams, 1984) (Thompson, 2009)

Forced turbulence (Graham et al., 2013) 16
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Numerical experiments: forced turbulence

Enstrophy spectrum (left) and fluxes (right) in forced turbulence.

I
0.4 4 ¥
~—~~ 1014 <o 1
- --== Mbpxs — 03] f -=== Mbpxs
| I M=25 1 — M=25
N M aposteriori E: 0.2 1 “ M aposteriori
— Maprion “ —— Mapion
102 4 apriori 0.1 ﬁ apriori
i
M Smagorinsky J M Smagorinsky
0.0 4 [
M Leith W M Leith
_0 1 <
10° 10t 10° 10t

k

Statistical quantities matching DNS in long-term simulations (18k iterations). 16
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Numerical experiments: beta-plane on topography

Decaying turbulence Forced turbulence
(McWilliams, 1984) (Graham et al., 2013)

Beta-plane on topography ( Thompson, 2009) 17
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Numerical experiments: beta-plane on topography

Beta-plane on topography (Thompson, 2009)

17
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Conclusion
Results: Potential limitations:
e Improved long-term stability with e Generalization capabilities (w.r.t.
small-term training. configuration).
e Flexibility of the loss function (not e Training time overhead complexity
explored). (technical).
e Higher performance for similar e Relying on solver gradient availability
complexity. (applicability).

18
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State-based learning in the annulus

1. Designing learning strategies for stable simulations

2. State-based learning in the annulus

4. Conclusion

18
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A spectral case for planetary interiors

Example: rotating spherical QG convection

Ow 2 Ra 1 00

LV (aw) = Aw+ 2 Bu, — Ly

gt TV () = Awt plus = prm s — Tw
W‘FUSUJZAU(z)_ST_TU(ﬁ

oT 1

— -(uT) = —AT

ot + V- (uT) Pr

Potential difficulties:

e Coupled correction terms to learn (2 + 1
axisymmetric).
e Grid inhomogeneity. Example of vorticity field from the code

) pizza (credits T. Gastine).
e Presence of boundaries.
19
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A spectral case for planetary interiors: almost removing coupled terms

Example: forced spherical QG

Ow 2
E+V~(uw)—Aw+Eﬁus+F—Tu}
Jug _ Uug .
87:+USWZAU¢_?§_TU¢

Potential difficulties:
o Coupled-correction-terms-to-tearn{2—+1
a)(-sy et -e’.
e Grid inhomogeneity. Vorticity " pumps” forcing pattern I

e Presence of boundaries. (Lemasquerier et al., 2023).

20
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A spectral case for planetary interiors: almost removing coupled terms

Example of vorticity field (left) and radially averaged azimutal velocity with varying 8 (spherical
container) with £ =3 x 1077,

20
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A spectral case for planetary interiors: inhomogeneous filter commutation

Spectral method:

Example: forced spherical QG e Discretization for azimutal
O 9 direction ¢ with Fourier
i V- (w) = Aw + Eﬁus +F—Tw (periodic) basis.
Oug T = AT — Uy Tag e Discretization for radial direction

ot 2 s with Chebyshev polynomials.

Potential difficulties:
o Cotpled-correction-terms-totearn{2—+1
a)(-sy et -e’.
e Grid inhomogeneity.

GL nodes: equispaced semi-circle

e Presence of boundaries. . )
projected on the line.

21
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A spectral case for planetary interiors: inhomogeneous filter commutation

Filtering in polynomial spaces:

Example: forced spherical QG e With Fourier, grid points are
equidistant: filters commute w.r.t.
%’: + V- (w) = Aw + %3us 1+ F—Yw partial derivatives.
g e In radial direction, SGS term

wy
+ W = At — 2 Tug contains some commuting error

(see Yalla et al., 2021).
Potential difficulties: ay _
5 =)+ 7(y)
o Coupled-correction-terms—totearn{2—+1 —~
. . FT(fFy))—F(T(y))
axisymrmetrie).
e Grid-inhomegeneity: (for a posteriori learning) e Not clear, but verified empirically.

e Presence of boundaries. e Impossible to construct "exact”

objective for a (a priori) training. 21

ot
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A spectral case for planetary interiors: boundary-preserving basis

Effect of filtering on boundaries :

c i 9
Example: forced spherical QG Uy = 1y = 0 or ¢ — % —Oats—s, s,
S

2
%+V~(uw):Aw+EﬁuS+F—TW ‘
oug Uy o 10000 a
a—: + U = Atig — S—‘; — Ty,
5000 A |
Potential difficulties: o \/ ‘
° ; . I 22 —5000

axisymme%rie} —10000 | —_— 7¥T-,u,g)
: ) ) ) — TG u)
0.6 0.8 1.0 1.2 14

o Grid-inhemegeneity- (for a posteriori learning) "

e Presence of boundaries. Radial slice of u with different filtering
methods. 22
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A spectral case for planetary interiors: boundary-preserving basis

Truncating in Galerkin basis:

Example: forced spherical QG 1. Transform Chebyshev coefficients to

the corresponding Galerkin basis:

Ow 2
—+ V- =A —Pus+F -7
e + V- (uw) w + Eﬁm + w Go(x) = G-'T, ()
oug g _
— +Usw = AUy — — — Y1
or A o 2. Truncate largest Galerkin
_ coefficients G, (z), m < n.
Potential difficulties: 3. Transform back to Chebyshev
e Coupled correction terms to learn {2+ 1 coefficients:
o Grid-inhemegeneity- (for a posteriori learning) T (7) = GG ()

© Presepecefboracares . .
To avoid non-zero divergence, truncate

22
and recompute u,, ugy and w.
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A spectral case for planetary interiors: truncated vorticity

Vorticity field from DNS at N,,, = 641, N,, = 321 (left) and from Galerkin truncation at
Np, =129, N, = 65 (right).

23
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Learning setup

Non-optimal architecture Preliminary results:
e 500 samples.

e Only 500 samples (20% of the
expected full dataset).

Temporal horizon N = 25.

Predictions in spectral space.

Variant of ConvNext (Liu et al., 2023). —— Tuning

~——— Mean

o Validation |

Complex activation function: 10

modrelu(z) = relu(|z| + 1)ﬁ T ex100
zl + e

4x10°

Spherical enstrophy loss:

3x10°

0.0 0.5 1.0 15 2.0 25 3.0
epoch
Np

S0
Uw,w) = Z / (|@2n|2 - |w;n‘2)5d5 a posteriori loss on limited dataset.
m=1"5i

24
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Results

Vorticity field from truncated DNS (left), from simulation truncated resolution without model (middle)
and with a posteriori-learned model (right) after 25k iterations.

25



Introduction Designing learning strategies for stable simulations State-based learning in the annulus Conclusion
0000 0000000000000 000 0O000000e [e]e]

Results

1e8
1 le7 14FT T T T T T
4.50 \\\
425 ‘N 12 %
|
1 4.00 |
\ 1.0
i c\{]\]ﬁ 3.75 A
S B}
3.50 0.8
2r 1 325
DNS 250 pNs — DNS
1k Mopesi 1 3.00F — My \/\j o6 Mpost
Mo 275 My s My
00100 0.0102 0.0104 0.0106 0.0108 0.0110 00100 00102 0.0104 0.0106 0.0108 0.0110 0.0100 00102 0.0104 0.0106 0.0108 0.0110

t

t

Velocity integrals evolution for 25k iterations.
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Results
108 | 4
10 | 4
—
£ wotp 1
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102+ \ B
--- DNS AN
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— Mpost AN
100+ N
[ MO \\'
10° 10t 102
m—+1

Time-averaged energy spectrum for 25k iterations.

25
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Takeaway / Next steps

a posteriori learning seems more natural when approaching
time-dependent PDE problems.
On the "hybrid” side:
o Evaluate "classical” models: Hyperdiffusion, Smagorinsky
(Matsui and Buffett, 2012).

o Similar methodology on spherical QG convection (coupled
terms, separate models (?)).

o Full dynamo system (spherical harmonics, 5 coupled terms).

Limiting factor: differentiable banded/sparse linear solvers.
On the "neural” side:

e Explore neural operators as an alternative numerical

method. -
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Thanks

Thanks for your attention.

27
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