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Turbulent components of Earth systems

Sub-mesoscale permitting, cloud-resolving and
geodynamo (credits: N. Schaeffer) simulations.

In geophysical systems:

• Ocean: mixing, boundary layers.

• Atmosphere: convection, clouds, gravity waves.

• Earth’s core: geodynamo.

Turbulent state:

• Large range of structures.

• Non-linear interactions.

• Chaotic: sensitive to initial conditions.

In simulations:

• Governed by Navier-Stokes equations (fluid

motion), and induction (magnetic field).

• Discretized on a grid. 1
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Computational limitations: hybrid modeling

Direct numerical simulation (DNS):

∂y

∂t
= f(y)

NDNS

Grids on domain length L and corresponding energy spectrum.

Grid domain and spacing:

• Not reachable in realistic

scenarios.

Reduced equations (LES):

• Universal small-scale dynamics.

• Applying projection T (y) = ȳ.

• Typically using a filter.

∂ȳ

∂t
= f(ȳ) + τ(y)︸︷︷︸

T (f(y))−f(T (y))

2
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Machine learning in physical sciences

Predicting the subgrid term using machine learning is a
regression problem.

Subgrid modeling in physics:

• Open-problem (1963-.).

• Models designed from well-known

functions (PDEs).

Scientific Machine Learning (SciML):

• Recent field (∼2018-.).

• Parametric functions (neural networks

for e.g.).

• Models designed as a supervised

learning problem.

• Using data from DNS.
3



Introduction Designing learning strategies for stable simulations State-based learning in the annulus Conclusion

Outlines

1. Designing learning strategies for stable simulations

Ideal domains: uniform grid and periodic boundary conditions.

2. State-based learning in the annulus

Not so ideal domains: non-uniform grid and rigid boundary conditions.

3. Beyond spectral: neural operators

Interaction with current solvers.

4. Conclusion

3



Introduction Designing learning strategies for stable simulations State-based learning in the annulus Conclusion

Designing learning strategies for stable simulations

1. Designing learning strategies for stable simulations

2. State-based learning in the annulus

3. Beyond spectral: neural operators

4. Conclusion
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Subgrid-scale challenges in QG dynamics

Example: quasi-geostrophic turbulence

∂tω + J(ψ, ω)︸ ︷︷ ︸
advection

= ν∇2ω︸ ︷︷ ︸
diffusion

− µω︸︷︷︸
drag

− β∂xψ︸ ︷︷ ︸
latitude variation

+ F︸︷︷︸
forcing

A simplified rotating geophysical surface system:

• Vorticity equation.

• Two-dimensional.

• 1 layer.

∂tω̄ + J(ψ̄, ω̄) = ν∇2ω̄ − µω̄ − β∂xψ̄ + F̄ + J(ψ̄, ω̄)− J(ψ, ω)︸ ︷︷ ︸
τω Example of reduced vorticity and SGS

term. 4
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Subgrid-scale challenges in QG dynamics

Potential difficulties:

• Accumulation of

small-scale energy:

numerical

instabilities.

• Incorrect

representation of

the unresolved

dynamics.

Difficulties in SGS modeling for two-dimensional turbulent systems.

4
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State of the art: historical

”Historical” – or physical turbu-
lence models (Sagaut, 2006):

• Mathematical developments

(Clark et al., 1979): Structural.

Structural

Stability -

Forward +

Backward +

Potential difficulties:

• Accumulation of small-scale energy: numerical

instabilities.

• Incorrect representation of the unresolved

dynamics.

Difficulties in SGS modeling for two-dimensional turbulent systems. 5
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State of the art: historical
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State of the art: machine learning

Current models:

• Exclusive on stability and correct

transfers.

• Machine learning as an alternative

(Brunton et al., 2020).

Solving a problem from data:

• Inputs ȳ.

• Output τ .

• Model M : ȳ → τ .

• ”Static”.

Initial experiments on two-dimensional turbulence (Maulik et
al., 2019).

Structural Functional ML

Stability - + -

Forward + - ++

Backward + - ++

6
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Numerical setup

Data generation pipeline.

Numerical solver g:

• Pseudo-spectral (Fourier

doubly periodic).

• Cutoff filter (wavenumbers

truncation).

• DNS 20482, reduced 1282.

• S = 3000 samples.

Learning models:

• From literature (not detailed

here).

• Equivalent NN

architectures.
7
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Turbulence evaluation metrics

a priori metrics

Prediction of the missing term on a fixed

time-step.

Instantaneous subgrid contribution.

a posteriori metrics

Prediction of the simulation’s trajectory over

a temporal horizon.
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〈 Φ
2
〉 −〈

Φ
〉 2

Developed turbulence regime

Transitional regime

Decaying scalar regime

Reλ ≈ 160

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
S. 10−3

Temporal evolution of kinetic energy. 8
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a priori learning

Instantaneous loss computation.

Instantaneous (classical) loss

L :=
〈
ℓ(M(ψ̄, ω̄), τω)

〉
x

• Optimize only on the next temporal

increment t+∆t.

• Not perfect: errors can either lead to

stable or unstable predictions.

9
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a priori learning

Instantaneous loss computation.

a priori turbulence ”metrics” (Pope,

2000)

ℓprio : = (M(ψ̄, ω̄)− τω)
2︸ ︷︷ ︸

Squared error

...

ℓprio : = τω(log τω −M(ψ̄, ω̄))︸ ︷︷ ︸
KL divergence

• ”Optimal” in a priori evaluations.

• Improved (non-interpretable) structural

model.
9
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a posteriori learning

a posteriori loss

L := ⟨ℓ(ȳpred(t),y(t))⟩x,t
ȳpred ≡ {ω̄pred, ψ̄pred,M}

y ≡ {ω, ψ, τω}

• Temporal component in loss function.

• Required to form a continuous

trajectory.

• Allows for a larger class of evaluation

metrics (encompass a priori if |t| = 1

and loss only uses τω). Temporal loss computation.

10
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a posteriori learning

a posteriori turbulence ”metrics” (Pope,

2000)

ℓpost : = Epred(k)− E(k)︸ ︷︷ ︸
Energy spectrum

: statistical

...

ℓpost : = (ω̄pred(t)− T (ω(t)))2︸ ︷︷ ︸
Vorticity squared error

: local

• ”Optimal” in a posteriori evaluations.

• Depends on the temporal horizon t

(limited, here M = 25). Temporal loss computation.

10
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a posteriori learning: in practice

Optimizing for future
quantities:

• Same (resolved) initial

conditions.

• Perform temporal

integrations during

training (M discrete

timesteps).

• Target fields can be

pre-computed.

Visual sketch of an a posteriori training on one trajectory.

11
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Technical bits

Gradient-based mathematical optimization:

for M(y | θ) : argmin
θ

L involves θn+1 = θn − γ∇θL

a priori loss gradient:

∇θℓprio(M, τω)

=
∂ℓprio
∂τω

∂τω
∂θ

+
∂ℓprio
∂M

∂M
∂θ

=
∂ℓprio
∂M

∂M
∂θ

a posteriori loss gradient:

∇θℓpost(ȳpred(t),y(t))

=
∂ℓpost
∂y

∂y

∂θ
+
∂ℓpost
∂ȳpred

∂ȳpred

∂θ

=
∂ℓpost
∂ȳpred

(∫ t

t0

∂g

∂θ
+
∂M
∂θ

dt′
)

a priori vs a posteriori : losses 12
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a posteriori learning: implementation

Gradient of the solver w.r.t. model pa-
rameters:

• Estimates using numerical derivatives.

• Manually implement adjoint.

• Automatic generation tools.

• Implementation using

auto-differentiation languages or

libraries.

• Deep Differentiable Emulators (Frezat

et al., 2024, Nonnenmacher and

Greenberg, 2021, Hatfield et al., 2021)

Gradient-free methods: not explored but
active field.

a posteriori loss gradient:

∂ℓpost
∂ȳpred

∫ t

t0

∂g

∂θ︸︷︷︸
Not available

+
∂M
∂θ

dt′



Differentiable programming libraries in Julia
and Python.

13
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Numerical experiments

Decaying turbulence (McWilliams,
1984)

Forced turbulence (Graham et al.,
2013)

Beta-plane on topography (Thompson,
2009)

14
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Numerical experiments: decaying turbulence

Decaying turbulence (McWilliams, 1984)

Forced turbulence
(Graham et al., 2013)

Beta-plane on topography
(Thompson, 2009)

15
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Numerical experiments: decaying turbulence

Energy (left) and enstrophy (right) in decaying turbulence.
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Unsteady generalization 3 times larger than training horizon. 15
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Numerical experiments: forced turbulence

Decaying turbulence
(McWilliams, 1984)

Forced turbulence (Graham et al., 2013)

Beta-plane on topography
(Thompson, 2009)

16
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Numerical experiments: forced turbulence

Enstrophy spectrum (left) and fluxes (right) in forced turbulence.
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Statistical quantities matching DNS in long-term simulations (18k iterations). 16
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Numerical experiments: beta-plane on topography

Decaying turbulence
(McWilliams, 1984)

Forced turbulence
(Graham et al., 2013)

Beta-plane on topography (Thompson, 2009) 17
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Numerical experiments: beta-plane on topography

Beta-plane on topography (Thompson, 2009)

17
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Conclusion

Results:

• Improved long-term stability with

small-term training.

• Flexibility of the loss function (not

explored).

• Higher performance for similar

complexity.

Potential limitations:

• Generalization capabilities (w.r.t.

configuration).

• Training time overhead complexity

(technical).

• Relying on solver gradient availability

(applicability).

18
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State-based learning in the annulus

1. Designing learning strategies for stable simulations

2. State-based learning in the annulus

3. Beyond spectral: neural operators

4. Conclusion

18
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A spectral case for planetary interiors

Example: rotating spherical QG convection

∂ω

∂t
+∇ · (uω) = ∆ω +

2

E
βus −

Ra

Pr

1

so

∂θ

∂ϕ
−Υω

∂uϕ
∂t

+ usω = ∆uϕ − uϕ
s2

−Υuϕ

∂T

∂t
+∇ · (uT ) = 1

Pr
∆T

Potential difficulties:

• Coupled correction terms to learn (2 + 1

axisymmetric).

• Grid inhomogeneity.

• Presence of boundaries.

Example of vorticity field from the code
pizza (credits T. Gastine).

19
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A spectral case for planetary interiors: almost removing coupled terms

Example: forced spherical QG

∂ω

∂t
+∇ · (uω) = ∆ω +

2

E
βus + F −Υω

∂uϕ
∂t

+ usω = ∆uϕ − uϕ
s2

−Υuϕ

Potential difficulties:

• Coupled correction terms to learn (2 + 1

axisymmetric).

• Grid inhomogeneity.

• Presence of boundaries.

Vorticity ”pumps” forcing pattern F
(Lemasquerier et al., 2023).

20
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A spectral case for planetary interiors: almost removing coupled terms

Example of vorticity field (left) and radially averaged azimutal velocity with varying β (spherical
container) with E = 3× 10−7.

20
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A spectral case for planetary interiors: inhomogeneous filter commutation

Example: forced spherical QG

∂ω

∂t
+∇ · (uω) = ∆ω +

2

E
βus + F −Υω

∂uϕ
∂t

+ usω = ∆uϕ − uϕ
s2

−Υuϕ

Potential difficulties:

• Coupled correction terms to learn (2 + 1

axisymmetric).

• Grid inhomogeneity.

• Presence of boundaries.

Spectral method:

• Discretization for azimutal

direction ϕ with Fourier

(periodic) basis.

• Discretization for radial direction

s with Chebyshev polynomials.

GL nodes: equispaced semi-circle
projected on the line.

21
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A spectral case for planetary interiors: inhomogeneous filter commutation

Example: forced spherical QG

∂ω

∂t
+∇ · (uω) = ∆ω +

2

E
βus + F −Υω

∂uϕ
∂t

+ usω = ∆uϕ − uϕ
s2

−Υuϕ

Potential difficulties:

• Coupled correction terms to learn (2 + 1

axisymmetric).

• Grid inhomogeneity. (for a posteriori learning)

• Presence of boundaries.

Filtering in polynomial spaces:

• With Fourier, grid points are

equidistant: filters commute w.r.t.

partial derivatives.

• In radial direction, SGS term

contains some commuting error

(see Yalla et al., 2021).

∂ȳ

∂t
= f(ȳ) + τ(y)︸︷︷︸

̸=T (f(y))−f(T (y))

• Not clear, but verified empirically.

• Impossible to construct ”exact”

objective for a (a priori) training. 21
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A spectral case for planetary interiors: boundary-preserving basis

Example: forced spherical QG

∂ω

∂t
+∇ · (uω) = ∆ω +

2

E
βus + F −Υω

∂uϕ
∂t

+ usω = ∆uϕ − uϕ
s2

−Υuϕ

Potential difficulties:

• Coupled correction terms to learn (2 + 1

axisymmetric).

• Grid inhomogeneity. (for a posteriori learning)

• Presence of boundaries.

Effect of filtering on boundaries :

us = uϕ = 0 or ψ =
∂ψ

∂s
= 0 at s = si, so,

0.6 0.8 1.0 1.2 1.4
s

10000

5000

0

5000

10000

uφ

T(T, uφ)
T(G, uφ)

Radial slice of uϕ with different filtering
methods. 22
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A spectral case for planetary interiors: boundary-preserving basis

Example: forced spherical QG

∂ω

∂t
+∇ · (uω) = ∆ω +

2

E
βus + F −Υω

∂uϕ
∂t

+ usω = ∆uϕ − uϕ
s2

−Υuϕ

Potential difficulties:

• Coupled correction terms to learn (2 + 1

axisymmetric).

• Grid inhomogeneity. (for a posteriori learning)

• Presence of boundaries.

Truncating in Galerkin basis:

1. Transform Chebyshev coefficients to

the corresponding Galerkin basis:

Gn(x) = G−1Tn(x)

2. Truncate largest Galerkin

coefficients Gm(x),m ≤ n.

3. Transform back to Chebyshev

coefficients:

Tm(x) = GGm(x)

To avoid non-zero divergence, truncate ψ

and recompute us, uϕ and ω. 22
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A spectral case for planetary interiors: truncated vorticity

Vorticity field from DNS at Nm = 641, Nr = 321 (left) and from Galerkin truncation at
Nm = 129, Nr = 65 (right).

23
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Learning setup

Non-optimal architecture
• 500 samples.

• Temporal horizon N = 25.

• Predictions in spectral space.

• Variant of ConvNext (Liu et al., 2023).

• Complex activation function:

modrelu(z) = relu(|z|+ 1)
z

|z|+ ϵ

• Spherical enstrophy loss:

ℓ(ω, ω̂) =

Nm∑
m=1

∫ so

si

(|ω̂m
s |2 − |ωm

s |2)sds

Preliminary results:

• Only 500 samples (20% of the

expected full dataset).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
epoch

1010

3 × 109

4 × 109

6 × 109

`

Training

Mean

Validation

a posteriori loss on limited dataset.
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Results

Vorticity field from truncated DNS (left), from simulation truncated resolution without model (middle)
and with a posteriori-learned model (right) after 25k iterations.

25
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Results
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Velocity integrals evolution for 25k iterations.
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Results
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Time-averaged energy spectrum for 25k iterations.
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Takeaway / Next steps

a posteriori learning seems more natural when approaching

time-dependent PDE problems.

On the ”hybrid” side:
• Evaluate ”classical” models: Hyperdiffusion, Smagorinsky

(Matsui and Buffett, 2012).

• Similar methodology on spherical QG convection (coupled

terms, separate models (?)).

• Full dynamo system (spherical harmonics, 5 coupled terms).

Limiting factor: differentiable banded/sparse linear solvers.

On the ”neural” side:

• Explore neural operators as an alternative numerical

method.
26
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Thanks

Thanks for your attention.

27
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