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NeuroSpin: A unique facility for Brain Imaging

Probe the human brain singularity at unprecedented scale using
outstanding scanners




3T 7

Spatial resolution = 0.2 x 0.2 x 1.0 mm?3, Acquisition Time =4 min 20 s







Scientific & General Public Communication

Mauconduit et al. Proc Intl Soc Magn Reson Med 2024

Boulant et al. Nat Methods
https://doi.org/10.21203/rs.3.rs-3931535/v1

The CEA decided to maintain an embargo over

this study till the end of the clinical investigation.
Then they launched their communication plan...

Impact?




Huge impact!




Spatial resolution: 0.2 x 0.2 x 1.0 mm3
TA 8 min 30s




Sampling & Under-sampling in MRI
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Parallel Imaging vs Compressed Sensing framework
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Summarizing accelerated MRI The big picture

MRI Image K-Space

Variable density Non-Cartesian sampling

density Radial Spiral
SPARKLING
Trajectories

6-10H 10-15min

Chaithya et al, Full 3D
SPARKLING, IEEE TMI 2022

Acquisition

Lazarus et al,
SPARKLING, MRM 2019

CS Reconstruction

PySAP-MRI

Cartesian Self L1- OSCAR
Reference Calibrating ESPIRIT Calibrationless
L Gueddari et al, ISMRM WS, Jan 2020

L Gueddari et al, Journal of Imaging, 2021

XPDNet
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Ramzi et al, NC-
PDNet, IEEE TMI 2022
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Accelerated acquisition using SPARKLING

MRI Image K-Space

TE = Echo time

Non-Cartesian sampling
Radial Spiral

Trajectory
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g Lazarus et al, SPARKLING: variable-density k-space filling curves for accelerated T, *-weighted MRI, MRM 2019




Impact of SPARKLING

3D SPARKLING

Chaithya G R
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Chaithya et al, Optimizing full 3D SPARKLING
trajectories for high-resolution Magnetic
Resonance Imaging, IEEE TMI 2022

Scan & Repeat
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= Z. Amor Coming soon
to Anatomical
Time imaging with
MP2RAGE
Amor, et al, Impact of field imperfections correction on
BOLD sensitivity in 3D-SPARKLING fMRI, MRM 2023
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R Baptista et al, IRM cerebrale du sodium rapide avec
SPARKLING 3D sous-echantillonnee a 7, Journal of
Neuroradiology 2023
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Spatial B, inhomogeneities & off-resonance effects

Cartesian example

Line by line
Cartesian trajectory

Non-Cartesian example

e w0
. )

0 Hz

.
- AB field maps .
SPARKLING trajectory
w(r) = yAB, N
S (t) = f p(r, t) ejw(r)tejy(k(t)-r) > S (tm) = Z p(rn’ tm) ejw(rn)tmejy(k(tm)-rn)
FOV n=1

Need for field map acquisitions 13

Meneses et al. Static field shimming in the human brain for ultra-high field MRI : conceptual limits and development of a novel hardware prototype.




Off-resonance correction: Beyond the Fourier model

[Sutton et al. IEEE TMI 2003]

. | e
(B,C) = arg e D | E=BC|%,,

with E = (E,..), Emn, = o~ 20mABo(Tn)tm  [Fessleretal. IEEE TSP 2005
T mn )y mn ——

Sutton et al, Fast, iterative image reconstruction for MRI in the presence of field inhomogeneities, TMI 2003 @
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Multicoil CS MR image reconstruction

Take the acceleration factor into account
.Parallel Imaging
-k-Space subsampling

Anatomical Volume

Pierre-Antoine
Comby, MSc

Non Uniform Sampling

|

Non Linear

iterative solver
FISTA, POGM, ...

Sensitivity Maps

Sparsity Promotion
L1, Group LASSO, ...

Kspace Data

Wavelet Decomposition
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Correction in SWI: Internally estimated field maps
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Sutton et al, Fast, iterative image reconstruction for MRI in the presence of field inhomogeneities, TMI 2003
Daval-Frérot et al, Iterative static field map estimation for off-resonance correction in SWI, MRM 2022




Unrolling MR image reconstruction algorithms

Traditional
MR Scans
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Accelerated
acquisitions

Compressed sensing,
Non-Cartesian
imaging, SPARKLING

Deep Neural network
for reconstruction
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Ramzi et al. XPDNet, App. Sci. 2020 Adler and Otkem, IEEE TMI 2018
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The 2020 fastMRI Challenge

Objectives:

> Run an international challenge to benchmark the DL solutions for MR brain image recon
> Acquisition setup that fits the clinical realm (multi-coil acquisition, multiple contrasts)
> Larger training set with a total of 6,970 brain scans (approx. 1.5 TB of raw k-space data, 3001 scans at 1.5T)

FLAIR Tiw

T1lw POST T2w

Ground Truth
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2020 fastMRI Challenge: Quantitative results

Our submissions was ranked 2" in the fastMRI
challenge based on radiologists evaluations
(1%t in the academic research)

Ramzi et al. XPDNet, App. Sci. 2020
Muckley, et al, Results of the 2020 fastMRI Challenge, IEEE TMI 2021 @

https://nips.cc/Conferences/2020/ScheduleMultitrack?event=16140 (fastMRI keynote)
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https://nips.cc/Conferences/2020/ScheduleMultitrack?event=16140

Ground truth, T2, XPDNet recon, trained on R=4, lower res,

Ramzi et al, ISMRM 2021

GRAPPA, 7T no cerebellum




NC-PDNet : Evaluation on 3D single-coil dataset

3D radial acquisition (OASIS dataset, T1 contrast) with AF =4

PSNR SSIM

OASIS data is magnitude-only images

Shimron E, Tamir JI, Wang K, Lustig M. Implicit data crimes: Machine learning bias arising from misuse of public data. Proc Natl Acad Sci
U S A. 2022;119(13):€2117203119. doi:10.1073/pnas.2117203119 @

23



NC-PDNet Training on Multi-coil Dataset

Multi-channel images

CALGARY-CAMPINAS PUBLIC BRAIN MR DATASET : 12-
Channel Coil Data:
o Raw fully-sampled, complex-valued k-space data
e T1-weighted, MPRAGE acquisition
o 1 mm isotropic acquisitions
o Acquisition matrix size for each channel:
Nx X Ny x Nz = 256 x 218 x [170,180].

. #Multi-coil 3D
Split
volumes
12-channel .
dataset Train 47
Val 20
Test 50




Experiments with Calgary Dataset

Preprocessing:
o Use Golf-Sparkling (AF =6.7) as a non-Cartesian sampling trajectory. Radial -> Golf-Sparkling
e Due to memory constraints, we perform SVD compression on coil dimension (select the first 5

orthonormal compressed coils). Single-Coil -> Multi-Coil extension
e Ground truth image is RSS (Root Sum of Squares) of the 5 compressed coils

Evaluation metrics: PSNR and SSIM are the quantitative metrics + visual quality of recon results
Deep Learning network hyper-parameters:
e 0 iterations, buffer-size of 2, and filter size 16

e Running experiments with MAE loss and Compound Loss (0.5 MAE + 0.5 MSSIM)
e Both presented models were trained for 50 epochs.

Epoch = A single pass through the entire training dataset
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Evaluation Results : MAE Loss V.S. Compound Loss

e NC-PDNet trained on 47 (3D 5-compressed coils) volumes
o Evaluation is performed on 20 volumes of validation calgary dataset split

Loss Mean+ Sd Meanz Sd SSIM
PSNR
MAE Loss 36.76 + 1.30 0.93 £0.013
Compound Loss 37.87 £1.24 0.94 + 0.011

Table 7 : 3D NC-PDnet quantitative comparison w.r.t loss function on
20 5-channel compressed validation volumes

Ground truth

Asma Tanabene

Compound Loss MAE Loss



Deep Learning Stacked AB -PDNet architecture

G. Daval-Frérot
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Incorporating AB, correction into neural network

Without off-resonance corrections With off-resonance corrections

™~

=

SSIM: 0.8947 SSIM: 0.9541 28

For realistic
reconstructions on actual
scanner data

/

0.6mm isotropic
SPARKLING,
Scan time = 3 min
AF=15

CS Reconstruction

Unrolled networks

Daval-Frérot et al, Deep learning assisted off-resonance correction for SWI, MRM 2023



Back-propagation on the network parameters
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Supervised vs Self-Supervised DL reconstruction

Yaman et al, MRM, 2020
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Supervised vs Self-Supervised DL reconstruction

Yaman et al, MRM, 2020
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PROJeCTOR: Blending Acquisition & Reconstruction Worlds* v

PROjection for Jointly IEarning non-Cartesian Trajectories while Optimizing Reconstructor
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Ramazi et al, NCPDNet,

. TMI 2022
Trajectory Y,
Ilg — Backpropagation:
— Trajectory and
Hardware reconstructor

constraints parameters update

— : 0
rojection (R.8) = arg min £, (x, RE(Fsox))
Chauffert et al, A projection algorithm for gradient ’

Kt—|—l waveforms design in MRI , IEEE TMI 2016
2 4...llIIlIIIlIllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Reconstruction time =1min
SSIM=0.95
PSNR=35.14

PROJeCTOR 3D
3D Calgary Dataset
167 Raw k-space data

Chaithya GR et al, BioEng 2023

~

(2) Box Plots

Chaithya
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Conclusion and Perspectives

« Ultra-high field imaging allows neuroscientists to probe the human brain in vivo
at unprecedented spatial resolution (200um isotropic) thanks to high SNR

« However, to meet clinical examination constraints, scan time must be short
without impeding image quality

o SPARKLING: a news CS-driven accelerated MR data acquisition technique

o Complexity of imaging was transferred to image reconstruction

Fortunately, deep learning went to the rescue to provide fast and ultra-clear image quality
NC-PDNet scales to 3D non-Cartesian imaging and off-resonance correction

Scalable to multi-coil imaging thanks to a new era of GPU boards (A100 and currently H100)0
Unsupervised learning either using SSDU or PnP approaches

o Ongoing work: extension to fMRI with SNAKE-fMRI
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Q2.3 - Supervision with realistic synthetic fMRI data

Simulator
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Thanks for your attention

Questions?

2-year postdoc fellow position at NeuroSpin (France), immediately available

TOPIC: High resolution SPARKLING fMRI imaging on humans at 11.7T
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Towards 3D SPARKLING
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Lazarus et al, SPARKLING: variable-density k-space filling curves for accelerated T, *-weighted MRI, MRM 2019
@ Lazarus et al, 3D SPARKLING for high resolution T, *-weighted MRI, NMR Biomed 2020 37




GPU

Accelerating for Fully 3D SPARKLING

O(N,)
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Wang et. al. PBBFMM3D: a Parallel Black-Box Fast Multipole Method for Non-oscillatory Kernels, arxiv 2019

@ https://www.bu.edu/pasi/courses/12-steps-to-having-a-fast-multipole-method-on-gpus/ N/4O )6 28

Chaithya et al, IEEE TMI 2022



Tackling off-resonance at acquisition: MORE-SPARKLING
3D

Slice
profile

(A) Cartesian Reference em porally
GRAPPA p4 (B) AB field map (C) T=0.0 (D) T=0.4 (E)T=0.8 (F) T=1.0 (G) T=12
Start of End of

> Trajectory Trajectory

Increasing temporal repulsion

. *No need for internal

field map estimation
*15 min reconstruction
time
Chaithya GR et al. MORE-
SPARKLING, MRM 2023

» Additional internal field
map estimation D—
» 8 hours reconstruction
time
Daval-Frérot et al, Iterative static field

map estimation for off-resonance
correction in SWI, MRM 2022
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