Generative model and component separation in limited data regime with Scattering Transform

Erwan Allys - ENS, Paris (Physics laboratory and Center for data science)

"Artificial Intelligence for HPC@Exscale" Workshop, Paris, October 3rd 2024

Non-Gaussian fields in astrophysics Limited data regime in astrophysics Example of scientific objectives

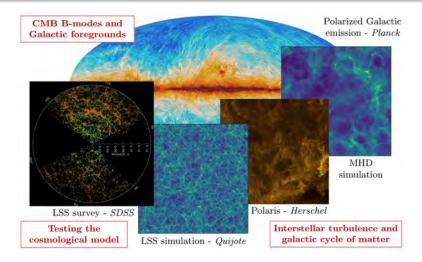
Outline

1 Introduction

- 2 Scattering Transforms and generative models
- **3** Application to component separation

Introduction

Scattering Transforms and generative models Application to component separation Non-Gaussian fields in astrophysics Limited data regime in astrophysics Example of scientific objectives



 \rightarrow Complex spatial/spectral processes ubiquitous in astrophysics \rightarrow Sometimes no model and limited data regime...

Non-Gaussian fields in astrophysics Limited data regime in astrophysics Example of scientific objectives

Limited data regime in astrophysics

• A limited amount of intricate observations

- ▶ A unique static multi-frequency sky
- Mixture of non-stationary components
 - \rightarrow isolated processes can be very rare
 - \rightarrow Depends on angular scale/frequency

Non-Gaussian fields in astrophysics Limited data regime in astrophysics Example of scientific objectives

Limited data regime in astrophysics

• A limited amount of intricate observations

- ▶ A unique static multi-frequency sky
- Mixture of non-stationary components
 - \rightarrow isolated processes can be very rare
 - \rightarrow Depends on angular scale/frequency

• Lack of models/training grounds

- ▶ Often no complete physical/numerical models
- Simulations are very expensive
 - \rightarrow no or very limited training dataset

Non-Gaussian fields in astrophysics Limited data regime in astrophysics Example of scientific objectives

Limited data regime in astrophysics

• A limited amount of intricate observations

- ▶ A unique static multi-frequency sky
- Mixture of non-stationary components
 - \rightarrow isolated processes can be very rare
 - \rightarrow Depends on angular scale/frequency

• Lack of models/training grounds

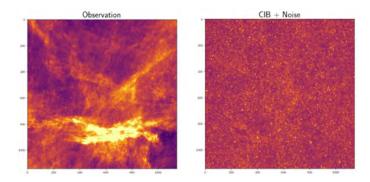
- ▶ Often no complete physical/numerical models
- Simulations are very expensive
 - \rightarrow no or very limited training dataset

 \rightarrow Work mainly from obs. data and physical knowledge? \rightarrow Rely on recent advances in data science?

Introduction

Scattering Transforms and generative models Application to component separation Non-Gaussian fields in astrophysics Limited data regime in astrophysics Example of scientific objectives

Example I: CIB/Galactic dust emission



• Galactic dust emission and Cosmic Infrared Background (CIB)

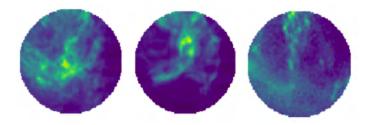
- ▶ Thermal dust emission in the interstellar medium
- ▶ Cosmic background dominates a smaller scales
- ▶ CIB isolated observation, no model for Galactic emission

\rightarrow Characterize Galactic dust emission on small scales?

Introduction

Scattering Transforms and generative models Application to component separation Non-Gaussian fields in astrophysics Limited data regime in astrophysics Example of scientific objectives

Example II: WNM/CNM in HI observations



• WNM/CNM component separation

- ▶ Warm (WNM) and Cold (CNM) Neutral Media
- ▶ Two phases with different spectral/spatial properties
- ▶ A few 1000s of unlabeled mixtures in HI (21cm) data

\rightarrow Learn phases structures directly from the data?

Outline

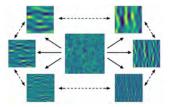
1 Introduction

2 Scattering Transforms and generative models

3 Application to component separation

Scattering transform (ST) statistics

- Scattering transform statistics (Mallat+, 2010+)
 - ▶ Initially developed in data science
 - Inspired from neural networks
 - \rightarrow efficient characterization and reduced variance
 - ▶ Do not need any training stage
 - \rightarrow explicit mathematical form and interpretability

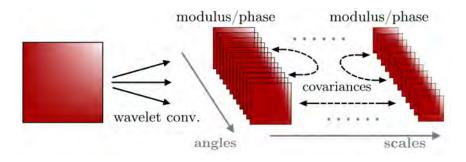


 \rightarrow Wavelet filters separating the different scales \rightarrow Coupling between scales with non-linearities

Scattering Transform statistics Generative models from Scattering transforms

Scattering Transform (ST) statistics

• Computation of ST statistics (EA+, 20)



 \rightarrow Shallow network with known filters/non-linearities \rightarrow 1 coeff / pair/triplet of scales / type of interaction

Scattering Transform statistics Generative models from Scattering transforms

Scattering Transform (ST) statistics

• A family of statistics

- Different generations of statistics
 - \rightarrow Wavelet Scattering Transforms (WST)
 - \rightarrow Wavelet Phase Harmonics (WPH)
 - \rightarrow Scattering covariances/spectra
- ▶ All share the same framework

- (EA+, 19)
- (EA+, 20)
- (Cheng+, 23)

Scattering Transform (ST) statistics

• A family of statistics

- Different generations of statistics
 - \rightarrow Wavelet Scattering Transforms (WST)
 - \rightarrow Wavelet Phase Harmonics (WPH)
 - \rightarrow Scattering covariances/spectra
- ▶ All share the same framework

• Characterization and parameter inference

- Interstellar medium (EA+ 19, Regaldo+20, Saydjari+, 20, Lei+, 22)
 Weak lensing (Cheng+, 20, 21)
- ▶ Large scale structures (EA+, 20, Eickenberg+, 22, Valogiannis+, 22a, 22b)
- ▶ 21cm epoch of reionization

▶ ...

 \rightarrow Very informative (sometimes on par with CNN!) \rightarrow Wide range of applicability (generic, training-less)

(EA+, 19)

(EA+, 20) (Cheng+, 23)

(Greig+, 22, Hothi+, 23)

Generative models from Scattering transforms

• Generative model from ST statistics (Bruna, Mallat, 19)

- From the ST statistics $\Phi(s)$ of a map s
- Maximum entropy microcanonical model
- ▶ New approximate samples of a process from examples
- ▶ Can quantitatively reproduce non-gaussian properties

Generative models from Scattering transforms

• Generative model from ST statistics (Bruna, Mallat, 19)

- From the ST statistics $\Phi(s)$ of a map s
- Maximum entropy microcanonical model
- ▶ New approximate samples of a process from examples
- ▶ Can quantitatively reproduce non-gaussian properties

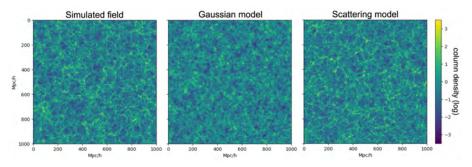
• Practical implementation

- Constraints $\Phi(s)$ from a (set of) data s
- ► Sampled with a gradient-descent algorithm
 - \rightarrow from a white noise realization
 - \rightarrow optimizing \tilde{s} such that $\Phi(\tilde{s}) \simeq \Phi(s)$

Scattering Transform statistics Generative models from Scattering transforms

Generative models from Scattering transforms

- Quantitative validation of syntheses (EA+, 20)
 - ▶ Large scale structures density field, Wavelets Phase Harmonics

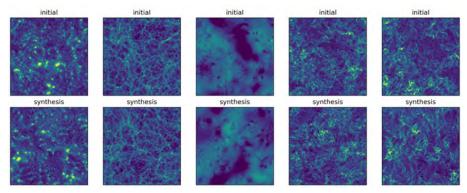


 \rightarrow Usual (NG) statistics very well reproduced (up to 1-10 %)

Scattering Transform statistics Generative models from Scattering transforms

Generative models from Scattering transforms

- Syntheses from a single image (Cheng+, 24)
 - ▶ Scattering spectra + physical dimensionality reduction



 $\label{eq:relation} \begin{array}{l} \rightarrow \mbox{ Realistic NG models from a few hundreds coefficients!} \\ \rightarrow \mbox{ Well adapted for a large number of physical fields} \end{array}$

Generative models from Scattering transforms

• ST generative models

- ▶ Low-dimensional: few 100s to low 1000s
- ▶ For regular "physical" fields
- Extended to various fields
 - \rightarrow Higher dimensions (3D+)
 - \rightarrow On the sphere (Mousset+, 24)
 - \rightarrow Multi-channel (*Régaldo+, 22*)

Generative models from Scattering transforms

• ST generative models

- ▶ Low-dimensional: few 100s to low 1000s
- ▶ For regular "physical" fields
- Extended to various fields
 - \rightarrow Higher dimensions (3D+)
 - \rightarrow On the sphere (Mousset+, 24)
 - \rightarrow Multi-channel (*Régaldo+*, 22)

• Needs related to NumPEx

- ▶ Versatile and scalable ST computations:
 - \rightarrow Adaptable Wavelet transforms
 - \rightarrow Fourier Transform (for modulus)
- ▶ Sampling algorithms (other than gradient descent ?)
 - \rightarrow Efficiently tracing the gradients
 - \rightarrow Incl. mean-field approach? (*Häggbom+*, 24)

Statistical component separation Solution with a gradient descent approach Unsupervised separation of HI data

Outline

1 Introduction

2 Scattering Transforms and generative models

3 Application to component separation

Statistical component separation Solution with a gradient descent approach Unsupervised separation of HI data

Statistical component separation

• Framework of the problem

- We observe a mixture d = s + c $\rightarrow d$ data, s signal of interest, c contamination
- Use knowledge of c to recover s
- No model for s...

Statistical component separation Solution with a gradient descent approach Unsupervised separation of HI data

Statistical component separation

• Framework of the problem

- We observe a mixture d = s + c $\rightarrow d$ data, s signal of interest, c contamination
- Use knowledge of c to recover s
- No model for s...

• Using ST generative models

- Assume S is described by p_{μ} ST models
 - \rightarrow Parametrized by μ such that $E_{s \sim p_{\mu}}[\phi(x)] = \mu$
- Estimate (part of) the $p(\mu|d)$ posterior

\rightarrow Statistical component separation \rightarrow Allows to get a posterior model of *s*

Statistical component separation Solution with a gradient descent approach Unsupervised separation of HI data

Statistical component separation

• Bayesian approach of the problem

- ▶ Parameter space: μ
- Data space: $\phi(d)$
- Forward model: f(s) = d converted in ST space

$$\mu \xrightarrow{p_{\mu}(s)} s \xrightarrow{f(s)=s+c} d \xrightarrow{ST} \phi(d)$$

Statistical component separation Solution with a gradient descent approach Unsupervised separation of HI data

Statistical component separation

• Bayesian approach of the problem

- ▶ Parameter space: μ
- Data space: $\phi(d)$
- ▶ Forward model: f(s) = d converted in ST space

$$\mu \xrightarrow{p_{\mu}(s)} s \xrightarrow{f(s)=s+c} d \xrightarrow{ST} \phi(d)$$

• Estimating the posterior

- ► Forward $f(\mu) = \phi(d)$ samplable in ST space
- ▶ Broad $p(\mu)$ prior can be defined around $\phi(d)$
- \Rightarrow Well posed Bayesian problem

Statistical component separation Solution with a gradient descent approach Unsupervised separation of HI data

Statistical component separation

• Bayesian approach of the problem

- ▶ Parameter space: μ
- Data space: $\phi(d)$
- ▶ Forward model: f(s) = d converted in ST space

$$\mu \xrightarrow{p_{\mu}(s)} s \xrightarrow{f(s)=s+c} d \xrightarrow{ST} \phi(d)$$

• Estimating the posterior

- ▶ Forward $f(\mu) = \phi(d)$ samplable in ST space
- ▶ Broad $p(\mu)$ prior can be defined around $\phi(d)$
- \Rightarrow Well posed Bayesian problem

 \rightarrow Sample/data space dim \sim 500 without structure \rightarrow Forward is still expensive (a few seconds on a GPU)

Statistical component separation Solution with a gradient descent approach Unsupervised separation of HI data

Solution with a gradient descent approach

• Generative model from available sample

- Estimate $\phi(s)$ from sample s
- Generate maps \tilde{s} such that

 $\Phi(\tilde{s}) \simeq \Phi(s)$

▶ Sampled with gradient descent from white noise

Statistical component separation Solution with a gradient descent approach Unsupervised separation of HI data

Solution with a gradient descent approach

• Generative model from available sample

- Estimate $\phi(s)$ from sample s
- Generate maps \tilde{s} such that

 $\Phi(\tilde{s}) \simeq \Phi(s)$

▶ Sampled with gradient descent from white noise

• Indirect observation with know contamination

- $d = s_0 + c_0$, assume we have p(c)
- Find map(s) \tilde{s} such that

$$\langle \Phi(\tilde{s} + c_i) \rangle_i \simeq \Phi(d)$$

• Gradient descent from d (for instance)

Statistical component separation Solution with a gradient descent approach Unsupervised separation of HI data

Solution with a gradient descent approach

• Generative model from available sample

- Estimate $\phi(s)$ from sample s
- Generate maps \tilde{s} such that

 $\Phi(\tilde{s}) \simeq \Phi(s)$

▶ Sampled with gradient descent from white noise

• Indirect observation with know contamination

- $d = s_0 + c_0$, assume we have p(c)
- Find map(s) \tilde{s} such that

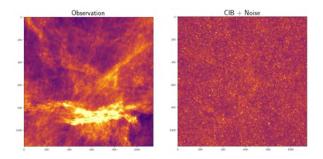
$$\langle \Phi(\tilde{s}+c_i) \rangle_i \simeq \Phi(d)$$

• Gradient descent from d (for instance)

 \rightarrow Framework for component separation \rightarrow Can include various other statistical constraints

Statistical component separation Solution with a gradient descent approach Unsupervised separation of HI data

Solution with a gradient descent approach



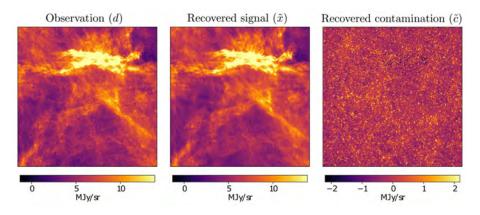
• Dust emission/Cosmic Infrared Background (Auclair+, 24)

- d = s + c, s thermal dust emission, c CIB
- ▶ CIB model from separate observation (cosmological \Rightarrow homogeneous)
- Two constraints, with $\{c_i\}_i$ from ST model

$$\left\langle \Phi(\tilde{s}+c_i) \right\rangle_i \simeq \Phi(d), \qquad \Phi(\tilde{c}) = \Phi(c)$$

Statistical component separation Solution with a gradient descent approach Unsupervised separation of HI data

• Recovered components (Auclair+, 24)



 \rightarrow Statistical component separation solely from obs. data! \rightarrow Thermal dust is recovered at an unprecedented resolution

Statistical component separation Solution with a gradient descent approach Unsupervised separation of HI data

Solution with a gradient descent approach

• Statistical component separation with ST

- Efficient and versatile framework
 - \rightarrow (Régaldo+, 21, Delouis+22, Siahkoohi+23)
- Allow joint handling of various constraints
 - \rightarrow 10s of losses in recent works
 - \rightarrow Incl. cross-statistics with ancillary data
- ▶ Still need to get a proper mathematical framework

Statistical component separation Solution with a gradient descent approach Unsupervised separation of HI data

Solution with a gradient descent approach

• Statistical component separation with ST

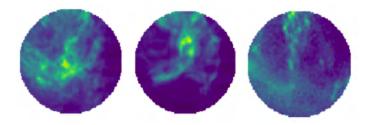
- Efficient and versatile framework
 - \rightarrow (Régaldo+, 21, Delouis+22, Siahkoohi+23)
- Allow joint handling of various constraints
 - \rightarrow 10s of losses in recent works
 - \rightarrow Incl. cross-statistics with ancillary data
- ▶ Still need to get a proper mathematical framework

• Needs related to NumPEx

- High dimensional optimization
 - \rightarrow Incl. high number of constraints
 - \rightarrow Exploration of "good" solutions
- High-dimensional Bayesian inversion
 - \rightarrow Sampling spaces of dim. a few 100s
 - \rightarrow Incl. adaptive learning

Statistical component separation Solution with a gradient descent approach Unsupervised separation of HI data

Unsupervised separation of HI data



• Recovering phase structures from the data

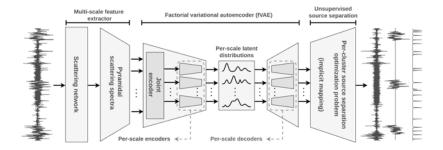
- ▶ A lot of HI observations of CNM/WNM/noise mixture
- ▶ No specific knowledge on each mixture
 - \rightarrow No isolated component observed

 \rightarrow Directly learn components ST models from the data?

Statistical component separation Solution with a gradient descent approach Unsupervised separation of HI data

Unsupervised separation of HI data

• Variational Auto-Encoder (VAE) in ST space (Siahkoohi+, 23a,b)

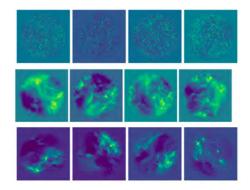


 \rightarrow Unsupervised learning of components in ST space

Statistical component separation Solution with a gradient descent approach Unsupervised separation of HI data

Unsupervised separation of HI data

- Application to HI data (Lei+, work in progress)
 - Unsupervised identification of 3 components



 \rightarrow WNM/CNM/noise seem quite well modeled! \rightarrow Interfacing ST models with other ML algorithms

Conclusion

• Scattering Transforms

- \rightarrow Non-Gaussian statistics inspired from neural network
- \rightarrow Efficient low-dim modeling of physical processes

• New tools for (astro-)physics and beyond

- \rightarrow ST models as basis for various inv. problems/comp. sep.
- \rightarrow First proofs of concepts obtained in component separation
- \rightarrow Ability to work with a very limited amount of data!

• Help from NumPEx would be precious

- \rightarrow Not always easy to interface with standard algorithms
- \rightarrow Scale to larger problems from proofs of concept
- \rightarrow Need to develop HPC expertise as a whole

Thanks for your attention!

Statistical component separation Solution with a gradient descent approach Unsupervised separation of HI data

Separation of polarized dust and noise

• Application to dust polarized emission and noise (Regaldo+, 21)

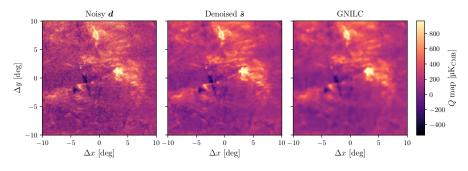
- ▶ d = s + c Planck polarization data at 353GHz
- $\blacktriangleright\ s$ polarized dust emission, c inhomogeneous noise
- ▶ 300 noise realizations c_i from Planck team
- \blacktriangleright Optimization done from d to keep largest scales

 $\langle \Phi(\tilde{s}+c_i) \rangle_i \simeq \Phi(d)$

Statistical component separation Solution with a gradient descent approach Unsupervised separation of HI data

Separation of polarized dust and noise

• Application to Chameleon-Musca region (Régaldo+ 21)

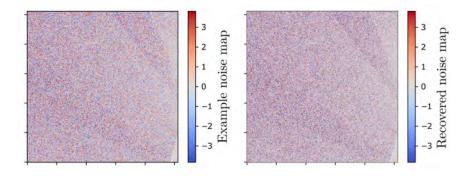


 \rightarrow Transition btw. deterministic and statistical \rightarrow Conceptual validation of the method

Statistical component separation Solution with a gradient descent approach Unsupervised separation of HI data

Separation of polarized dust and noise

• Recovered contamination (Régaldo+ 21)



 \rightarrow Statistical separation of components \rightarrow Residual structures could also be constrained

Statistical component separation Solution with a gradient descent approach Unsupervised separation of HI data

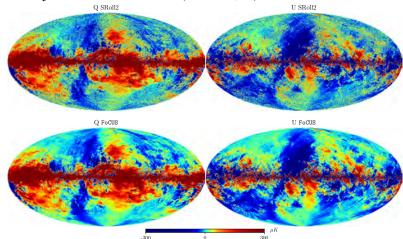
Separation of polarized dust and noise

• Refinements of this work on the whole sky (Delouis+, 22)

- Introduce additional constraints
 - \rightarrow 3 constraints including cross-statistics
- Educated normalization of each constraint
 - \rightarrow constraints normalized by variance over $\{c_i\}$
- Introduce local constraints for non-stationary
 - \rightarrow 4 selected regions for Galactic heterogeneity

Statistical component separation Solution with a gradient descent approach Unsupervised separation of HI data

• Full sky results at 353GHz (Delouis+, 22)



→ Deterministic up to SNR \simeq 0.1, statistical up to SNR \simeq 0.01 → Efficient and versatile framework for statistical comp. separation