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→ Complex spatial/spectral processes ubiquitous in astrophysics
→ Sometimes no model and limited data regime...
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Limited data regime in astrophysics

• A limited amount of intricate observations

I A unique static multi-frequency sky
I Mixture of non-stationary components

→ isolated processes can be very rare
→ Depends on angular scale/frequency

• Lack of models/training grounds

I Often no complete physical/numerical models
I Simulations are very expensive

→ no or very limited training dataset

→ Work mainly from obs. data and physical knowledge?
→ Rely on recent advances in data science?
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Example I: CIB/Galactic dust emission

• Galactic dust emission and Cosmic Infrared Background (CIB)

I Thermal dust emission in the interstellar medium
I Cosmic background dominates a smaller scales
I CIB isolated observation, no model for Galactic emission

→ Characterize Galactic dust emission on small scales?
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Example II: WNM/CNM in HI observations

• WNM/CNM component separation

I Warm (WNM) and Cold (CNM) Neutral Media
I Two phases with different spectral/spatial properties
I A few 1000s of unlabeled mixtures in HI (21cm) data

→ Learn phases structures directly from the data?
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Scattering transform (ST) statistics

• Scattering transform statistics (Mallat+, 2010+)

I Initially developed in data science
I Inspired from neural networks

→ efficient characterization and reduced variance
I Do not need any training stage

→ explicit mathematical form and interpretability

→ Wavelet filters separating the different scales
→ Coupling between scales with non-linearities
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Scattering Transform (ST) statistics

• Computation of ST statistics (EA+, 20)

→ Shallow network with known filters/non-linearities
→ 1 coeff / pair/triplet of scales / type of interaction

9 Erwan Allys NumPEx Workshop October 3rd



Introduction
Scattering Transforms and generative models

Application to component separation

Scattering Transform statistics
Generative models from Scattering transforms

Scattering Transform (ST) statistics

• A family of statistics

I Different generations of statistics
→ Wavelet Scattering Transforms (WST) (EA+, 19)

→ Wavelet Phase Harmonics (WPH) (EA+, 20)

→ Scattering covariances/spectra (Cheng+, 23)

I All share the same framework

• Characterization and parameter inference

I Interstellar medium (EA+ 19, Regaldo+20, Saydjari+, 20, Lei+, 22)

I Weak lensing (Cheng+, 20, 21)

I Large scale structures (EA+, 20, Eickenberg+, 22, Valogiannis+, 22a, 22b)

I 21cm epoch of reionization (Greig+, 22, Hothi+, 23)

I ...

→ Very informative (sometimes on par with CNN!)
→ Wide range of applicability (generic, training-less)
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Generative models from Scattering transforms

• Generative model from ST statistics (Bruna, Mallat, 19)

I From the ST statistics Φ(s) of a map s
I Maximum entropy microcanonical model
I New approximate samples of a process from examples
I Can quantitatively reproduce non-gaussian properties

• Practical implementation

I Constraints Φ(s) from a (set of) data s
I Sampled with a gradient-descent algorithm

→ from a white noise realization
→ optimizing s̃ such that Φ(s̃) ' Φ(s)

11 Erwan Allys NumPEx Workshop October 3rd



Introduction
Scattering Transforms and generative models

Application to component separation

Scattering Transform statistics
Generative models from Scattering transforms

Generative models from Scattering transforms

• Generative model from ST statistics (Bruna, Mallat, 19)

I From the ST statistics Φ(s) of a map s
I Maximum entropy microcanonical model
I New approximate samples of a process from examples
I Can quantitatively reproduce non-gaussian properties

• Practical implementation

I Constraints Φ(s) from a (set of) data s
I Sampled with a gradient-descent algorithm

→ from a white noise realization
→ optimizing s̃ such that Φ(s̃) ' Φ(s)

11 Erwan Allys NumPEx Workshop October 3rd



Introduction
Scattering Transforms and generative models

Application to component separation

Scattering Transform statistics
Generative models from Scattering transforms

Generative models from Scattering transforms

• Quantitative validation of syntheses (EA+, 20)

I Large scale structures density field, Wavelets Phase Harmonics

→ Usual (NG) statistics very well reproduced (up to 1-10 %)
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Generative models from Scattering transforms

• Syntheses from a single image (Cheng+, 24)

I Scattering spectra + physical dimensionality reduction

→ Realistic NG models from a few hundreds coefficients!
→ Well adapted for a large number of physical fields
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Generative models from Scattering transforms

• ST generative models

I Low-dimensional: few 100s to low 1000s
I For regular ”physical” fields
I Extended to various fields

→ Higher dimensions (3D+)
→ On the sphere (Mousset+, 24)

→ Multi-channel (Régaldo+, 22)

• Needs related to NumPEx

I Versatile and scalable ST computations:
→ Adaptable Wavelet transforms
→ Fourier Transform (for modulus)

I Sampling algorithms (other than gradient descent ?)
→ Efficiently tracing the gradients
→ Incl. mean-field approach? (Häggbom+, 24)

14 Erwan Allys NumPEx Workshop October 3rd



Introduction
Scattering Transforms and generative models

Application to component separation

Scattering Transform statistics
Generative models from Scattering transforms

Generative models from Scattering transforms

• ST generative models

I Low-dimensional: few 100s to low 1000s
I For regular ”physical” fields
I Extended to various fields

→ Higher dimensions (3D+)
→ On the sphere (Mousset+, 24)

→ Multi-channel (Régaldo+, 22)

• Needs related to NumPEx

I Versatile and scalable ST computations:
→ Adaptable Wavelet transforms
→ Fourier Transform (for modulus)

I Sampling algorithms (other than gradient descent ?)
→ Efficiently tracing the gradients
→ Incl. mean-field approach? (Häggbom+, 24)
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Statistical component separation

• Framework of the problem

I We observe a mixture d = s+ c
→ d data, s signal of interest, c contamination

I Use knowledge of c to recover s
I No model for s...

• Using ST generative models

I Assume S is described by pµ ST models
→ Parametrized by µ such that Es∼pµ [φ(x)] = µ

I Estimate (part of) the p(µ|d) posterior

→ Statistical component separation
→ Allows to get a posterior model of s

16 Erwan Allys NumPEx Workshop October 3rd



Introduction
Scattering Transforms and generative models

Application to component separation

Statistical component separation
Solution with a gradient descent approach
Unsupervised separation of HI data

Statistical component separation

• Framework of the problem

I We observe a mixture d = s+ c
→ d data, s signal of interest, c contamination

I Use knowledge of c to recover s
I No model for s...

• Using ST generative models

I Assume S is described by pµ ST models
→ Parametrized by µ such that Es∼pµ [φ(x)] = µ

I Estimate (part of) the p(µ|d) posterior

→ Statistical component separation
→ Allows to get a posterior model of s

16 Erwan Allys NumPEx Workshop October 3rd



Introduction
Scattering Transforms and generative models

Application to component separation

Statistical component separation
Solution with a gradient descent approach
Unsupervised separation of HI data

Statistical component separation

• Bayesian approach of the problem

I Parameter space: µ
I Data space: φ(d)
I Forward model: f(s) = d converted in ST space

µ
pµ(s)−−−−−−→ s

f(s)=s+c−−−−−−→ d
ST−−−−−→ φ(d)

• Estimating the posterior

I Forward f(µ) = φ(d) samplable in ST space
I Broad p(µ) prior can be defined around φ(d)
⇒ Well posed Bayesian problem

→ Sample/data space dim ∼ 500 without structure
→ Forward is still expensive (a few seconds on a GPU)

17 Erwan Allys NumPEx Workshop October 3rd



Introduction
Scattering Transforms and generative models

Application to component separation

Statistical component separation
Solution with a gradient descent approach
Unsupervised separation of HI data

Statistical component separation

• Bayesian approach of the problem

I Parameter space: µ
I Data space: φ(d)
I Forward model: f(s) = d converted in ST space

µ
pµ(s)−−−−−−→ s

f(s)=s+c−−−−−−→ d
ST−−−−−→ φ(d)

• Estimating the posterior

I Forward f(µ) = φ(d) samplable in ST space
I Broad p(µ) prior can be defined around φ(d)
⇒ Well posed Bayesian problem

→ Sample/data space dim ∼ 500 without structure
→ Forward is still expensive (a few seconds on a GPU)

17 Erwan Allys NumPEx Workshop October 3rd



Introduction
Scattering Transforms and generative models

Application to component separation

Statistical component separation
Solution with a gradient descent approach
Unsupervised separation of HI data

Statistical component separation

• Bayesian approach of the problem

I Parameter space: µ
I Data space: φ(d)
I Forward model: f(s) = d converted in ST space

µ
pµ(s)−−−−−−→ s

f(s)=s+c−−−−−−→ d
ST−−−−−→ φ(d)

• Estimating the posterior

I Forward f(µ) = φ(d) samplable in ST space
I Broad p(µ) prior can be defined around φ(d)
⇒ Well posed Bayesian problem

→ Sample/data space dim ∼ 500 without structure
→ Forward is still expensive (a few seconds on a GPU)

17 Erwan Allys NumPEx Workshop October 3rd



Introduction
Scattering Transforms and generative models

Application to component separation

Statistical component separation
Solution with a gradient descent approach
Unsupervised separation of HI data

Solution with a gradient descent approach

• Generative model from available sample

I Estimate φ(s) from sample s
I Generate maps s̃ such that

Φ(s̃) ' Φ(s)

I Sampled with gradient descent from white noise

• Indirect observation with know contamination

I d = s0 + c0, assume we have p(c)
I Find map(s) s̃ such that

〈Φ(s̃+ ci)〉i ' Φ(d)

I Gradient descent from d (for instance)

→ Framework for component separation
→ Can include various other statistical constraints
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Solution with a gradient descent approach

Dust emission/Cosmic Infrared Background (Auclair+, 24)

I d = s+ c, s thermal dust emission, c CIB
I CIB model from separate observation (cosmological ⇒ homogeneous)
I Two constraints, with {ci}i from ST model〈

Φ(s̃+ ci)
〉
i
' Φ(d), Φ(c̃) = Φ(c)
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Recovered components (Auclair+, 24)

→ Statistical component separation solely from obs. data!
→ Thermal dust is recovered at an unprecedented resolution
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Solution with a gradient descent approach

• Statistical component separation with ST

I Efficient and versatile framework
→ (Régaldo+, 21, Delouis+22, Siahkoohi+23)

I Allow joint handling of various constraints
→ 10s of losses in recent works
→ Incl. cross-statistics with ancillary data

I Still need to get a proper mathematical framework

• Needs related to NumPEx

I High dimensional optimization
→ Incl. high number of constraints
→ Exploration of ”good” solutions

I High-dimensional Bayesian inversion
→ Sampling spaces of dim. a few 100s
→ Incl. adaptive learning
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Unsupervised separation of HI data

• Recovering phase structures from the data

I A lot of HI observations of CNM/WNM/noise mixture
I No specific knowledge on each mixture

→ No isolated component observed

→ Directly learn components ST models from the data?
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Unsupervised separation of HI data

• Variational Auto-Encoder (VAE) in ST space (Siahkoohi+, 23a,b)

→ Unsupervised learning of components in ST space

23 Erwan Allys NumPEx Workshop October 3rd



Introduction
Scattering Transforms and generative models

Application to component separation

Statistical component separation
Solution with a gradient descent approach
Unsupervised separation of HI data

Unsupervised separation of HI data

• Application to HI data (Lei+, work in progress)

I Unsupervised identification of 3 components

→ WNM/CNM/noise seem quite well modeled!
→ Interfacing ST models with other ML algorithms
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Conclusion

• Scattering Transforms

→ Non-Gaussian statistics inspired from neural network

→ Efficient low-dim modeling of physical processes

• New tools for (astro-)physics and beyond

→ ST models as basis for various inv. problems/comp. sep.

→ First proofs of concepts obtained in component separation

→ Ability to work with a very limited amount of data!

• Help from NumPEx would be precious

→ Not always easy to interface with standard algorithms

→ Scale to larger problems from proofs of concept

→ Need to develop HPC expertise as a whole

Thanks for your attention!
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Separation of polarized dust and noise

• Application to dust polarized emission and noise (Regaldo+, 21)

I d = s+ c Planck polarization data at 353GHz
I s polarized dust emission, c inhomogeneous noise
I 300 noise realizations ci from Planck team
I Optimization done from d to keep largest scales

〈Φ(s̃+ ci)〉i ' Φ(d)
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Separation of polarized dust and noise

• Application to Chameleon-Musca region (Régaldo+ 21)

−10 −5 0 5 10

∆x [deg]

−10

−5

0

5

10

∆
y

[d
eg

]

Noisy d

−10 −5 0 5 10

∆x [deg]

Denoised s̃

−10 −5 0 5 10

∆x [deg]

GNILC

−400

−200

0

200

400

600

800

Q
m

ap
[µ

K
C

M
B

]

→ Transition btw. deterministic and statistical
→ Conceptual validation of the method
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Separation of polarized dust and noise

• Recovered contamination (Régaldo+ 21)

→ Statistical separation of components
→ Residual structures could also be constrained
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Separation of polarized dust and noise

• Refinements of this work on the whole sky (Delouis+, 22)

I Introduce additional constraints
→ 3 constraints including cross-statistics

I Educated normalization of each constraint
→ constraints normalized by variance over {ci}

I Introduce local constraints for non-stationary
→ 4 selected regions for Galactic heterogeneity
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• Full sky results at 353GHz (Delouis+, 22)
Q SRoll2

Q FoCUS

U SRoll2

U FoCUS

-300 0 300

µK

→ Deterministic up to SNR'0.1, statistical up to SNR'0.01
→ Efficient and versatile framework for statistical comp. separation
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