
Automatic
Multi-Versioningof
ComputationKernels
ExaSoft General Assembly - Toulouse
Raphaël Colin
PhD student under the supervision of
Philippe Clauss & Thierry Gautier
November 7th 2024



Table of Contents

Introduction

Execution context

Version generation

Implementing an automatic multi-versioning system

Future Work

1



Introduction

Execution context

Version generation

Implementing an automatic multi-versioning system

Future Work

2



Context of this work

General goal
Optimizing scientific codes for exascale architectures

• PhD started in October 2023
• WP2: Just-In-Time code optimization with continuous feedback loop

3



Context of this work

General goal
Optimizing scientific codes for exascale architectures

• PhD started in October 2023
• WP2: Just-In-Time code optimization with continuous feedback loop

3



Multi-Versioning

Definition
Have multiple versions of the same program (or part of a program), and use
the best version for a given execution context.

• Execution context→ what is it made of?
• Multiple versions→ how are versions generated?
• Best version? → different metrics (performance, energy efficiency)

4



Multi-Versioning

Definition
Havemultiple versions of the same program (or part of a program), and use
the best version for a given execution context.

• Execution context→ what is it made of?
• Multiple versions→ how are versions generated?
• Best version? → different metrics (performance, energy efficiency)

4



Introduction

Execution context

Version generation

Implementing an automatic multi-versioning system

Future Work

5



Execution context

Software

• Function parameters
• Value of global variables
• System parameters
• ...

Hardware

• Cache characteristics
• Accelerators
• CPU Architecture
• ...

6



Execution context - Impact on optimization I

1024 2000 4000

0.5

1

1.5

context (size of matrices)

sp
ee
du

p
/n

o
til
in
g tile size 16x16x16

tile size 32x32x32
tile size 64x64x64

Trahrhe Machine
2 x AMD EPYC 7502
32-Core 2.5GHz
Tested with 32
threads

Figure 1: Speedup for the 3mm Polybench benchmark by context

7



Execution context - Impact on optimization II

tsteps=104
length=500

tsteps=103
length=500

tsteps=104
length=50

0

2

4

context (timesteps and size of data)

sp
ee
du

p
/n

o
til
in
g tile size 16x16x16

tile size 32x32x32
tile size 64x64x64

Trahrhe Machine
2 x AMD EPYC 7502
32-Core 2.5GHz
Tested with 32
threads

Figure 2: Speedups for the dynprog Polybench benchmark by context

8



Introduction

Execution context

Version generation

Implementing an automatic multi-versioning system

Future Work

9



Version generation

We can obtain multiple versions:
• by writing them by hand→ different algorithms for the same problem
• by generating them automatically→ optimize differently

Tools for optimization

• Classical compiler optimizations→ function specialization
• Polyhedral optimizations→ loop transformations

10



Version generation

We can obtain multiple versions:
• by writing them by hand→ different algorithms for the same problem
• by generating them automatically→ optimize differently

Tools for optimization

• Classical compiler optimizations→ function specialization
• Polyhedral optimizations→ loop transformations

10



Polyhedral optimizations

The polyhedral model

• A mathematical model to represent loop nests
• Allows loop transformations respecting data dependencies
• Limited to affine loop nests

Tools

• Pluto
• Polly (clang)
• Graphite (gcc)

11



Apollo

Polyhedral model limitations

The polyhedral model can only be used with affine loop nests

Apollo [1, 2]

• Project of the Inria CAMUS team
• Using polyhedral optimizations on statically non-affine loops
• Dynamic optimization and JIT compilation

12



Apollo

Polyhedral model limitations

The polyhedral model can only be used with affine loop nests

Figure 3: Apollo execution model

12



Apollo

We can leverage Apollo for automatic multi-versioning:
• JIT compilation
• Polyhedral optimization
• Prediction model (for memory accesses, scalar values, etc.)

13



Motivation for (dynamic) multi-versioning

Code transformations:
• Performance is hard to predict for a specific code [3]
• Harder to tailor for a specific execution context

14



Introduction

Execution context

Version generation

Implementing an automatic multi-versioning system

Future Work

15



Multi-versioning in Apollo

Existing implementation [4]

Each time a loop nest is encountered:
• A new loop transformation is computed
• It is executed and timed
Once all transformations are tested:
• Directly use the best found version

Issues

• No context analysis
• The context isn’t used to computed optimization parameters
• Multi-versioning is only partly dynamic (optimization parameters are
pre-determined)

16



Multi-versioning in Apollo

Existing implementation [4]

Each time a loop nest is encountered:
• A new loop transformation is computed
• It is executed and timed
Once all transformations are tested:
• Directly use the best found version

Issues

• No context analysis
• The context isn’t used to computed optimization parameters
• Multi-versioning is only partly dynamic (optimization parameters are
pre-determined)

16



Designing a new system

Multiple phases

• Start by collecting execution contexts
• Analyze collected contexts
• Generate versions with the help of context parameters

Current state

• Collection of software context
• Ability to run the kernel separately for evaluation
• Leverage the existing Apollo features for loop transformation (loop tiling)

17



Example

#pragma apollo kernel
void computation_kernel(/* ... */) {

#pragma apollo dcop
for (/* ... */) {

/* ... */
}

}

18



Introduction

Execution context

Version generation

Implementing an automatic multi-versioning system

Future Work

19



Multi-versioning implementation

• More advanced context analysis
◦ We can leverage Apollo’s prediction models

• Target parametric and non-parametric optimizations:
◦ Function specialization
◦ Software pre-fetching

• Use more realistic benchmarks

20



In general

• Looking at multi-versioning for accelerators (GPUs)
• Considering energy efficiency

21



Thank you

Questions?

22



References I

[1] Aravind Sukumaran Rajam. “Beyond the realm of the polyhedral model
: combining speculative program parallelization with polyhedral
compilation”. Theses. Université de Strasbourg, Nov. 2015. url:
https://theses.hal.science/tel-01342007.

[2] Juan Manuel Martinez Caamaño et al. “Full runtime polyhedral
optimizing loop transformations with the generation, instantiation, and
scheduling of code-bones”. en. In: Concurr. Comput. 29.15 (Aug. 2017),
e4192.

[3] Spyridon Triantafyllis et al. “Compiler optimization-space exploration”.
In: Proceedings of the International Symposium on Code Generation and
Optimization: Feedback-Directed and Runtime Optimization. CGO ’03.
USA: IEEE Computer Society, 2003, pp. 204–215. isbn: 076951913X.

23

https://theses.hal.science/tel-01342007


References II

[4] Raquel Lazcano et al. “Runtime multi-versioning and specialization
inside a memoized speculative loop optimizer”. In: Proceedings of the
29th International Conference on Compiler Construction. CC 2020. San
Diego, CA, USA: Association for Computing Machinery, 2020,
pp. 96–107. isbn: 9781450371209. doi: 10.1145/3377555.3377886. url:
https://doi.org/10.1145/3377555.3377886.

24

https://doi.org/10.1145/3377555.3377886
https://doi.org/10.1145/3377555.3377886

	Introduction
	Execution context
	Version generation
	Implementing an automatic multi-versioning system
	Future Work
	References

