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Context of this work

General goal
Optimizing scientific codes for exascale architectures

• PhD started in October 2023
• WP2: Just-In-Time code optimization with continuous feedback loop

3



Context of this work

General goal
Optimizing scientific codes for exascale architectures

• PhD started in October 2023
• WP2: Just-In-Time code optimization with continuous feedback loop

3



Multi-Versioning

Definition
Have multiple versions of the same program (or part of a program), and use
the best version for a given execution context.

• Execution context→ what is it made of?
• Multiple versions→ how are versions generated?
• Best version? → different metrics (performance, energy efficiency)
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Execution context

Software

• Function parameters
• Value of global variables
• System parameters
• ...

Hardware

• Cache characteristics
• Accelerators
• CPU Architecture
• ...
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Execution context - Impact on optimization I

1024 2000 4000

0.5

1

1.5

context (size of matrices)

sp
ee
du

p
/n

o
til
in
g tile size 16x16x16

tile size 32x32x32
tile size 64x64x64

Trahrhe Machine
2 x AMD EPYC 7502
32-Core 2.5GHz
Tested with 32
threads

Figure 1: Speedup for the 3mm Polybench benchmark by context
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Execution context - Impact on optimization II
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Figure 2: Speedups for the dynprog Polybench benchmark by context
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Version generation

We can obtain multiple versions:
• by writing them by hand→ different algorithms for the same problem
• by generating them automatically→ optimize differently

Tools for optimization

• Classical compiler optimizations→ function specialization
• Polyhedral optimizations→ loop transformations
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Polyhedral optimizations

The polyhedral model

• A mathematical model to represent loop nests
• Allows loop transformations respecting data dependencies
• Limited to affine loop nests

Tools

• Pluto
• Polly (clang)
• Graphite (gcc)
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Apollo

Polyhedral model limitations

The polyhedral model can only be used with affine loop nests

Apollo [1, 2]

• Project of the Inria CAMUS team
• Using polyhedral optimizations on statically non-affine loops
• Dynamic optimization and JIT compilation
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Apollo

Polyhedral model limitations

The polyhedral model can only be used with affine loop nests

Figure 3: Apollo execution model

12



Apollo

We can leverage Apollo for automatic multi-versioning:
• JIT compilation
• Polyhedral optimization
• Prediction model (for memory accesses, scalar values, etc.)
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Motivation for (dynamic) multi-versioning

Code transformations:
• Performance is hard to predict for a specific code [3]
• Harder to tailor for a specific execution context
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Multi-versioning in Apollo

Existing implementation [4]

Each time a loop nest is encountered:
• A new loop transformation is computed
• It is executed and timed
Once all transformations are tested:
• Directly use the best found version

Issues

• No context analysis
• The context isn’t used to computed optimization parameters
• Multi-versioning is only partly dynamic (optimization parameters are
pre-determined)
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Designing a new system

Multiple phases

• Start by collecting execution contexts
• Analyze collected contexts
• Generate versions with the help of context parameters

Current state

• Collection of software context
• Ability to run the kernel separately for evaluation
• Leverage the existing Apollo features for loop transformation (loop tiling)
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Example

#pragma apollo kernel
void computation_kernel(/* ... */) {

#pragma apollo dcop
for (/* ... */) {

/* ... */
}

}
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Multi-versioning implementation

• More advanced context analysis
◦ We can leverage Apollo’s prediction models

• Target parametric and non-parametric optimizations:
◦ Function specialization
◦ Software pre-fetching

• Use more realistic benchmarks
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In general

• Looking at multi-versioning for accelerators (GPUs)
• Considering energy efficiency
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Thank you

Questions?
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