
Recursive tasks

Thomas Morin, Gwenolé Lucas,
Nathalie Furmento, Abdou Guermouche,
Samuel Thibault, Pierre-André Wacrenier

1. Recursive tasks

Summary

07/11/2024 2

2. Granularity steering 3. Results

1. Recursive tasks

07/11/2024 3

STF : Sequential Task Flow

07/11/2024 4

Natural way to express tasks

Dependencies
 Automatically inferred
 Order of submission

0 200 400 600 800 1000 1200 1400 1600 1800
Matrix Size (N)

101

102

103

Pe
rfo

rm
an

ce
 (G

flo
p/

s)

CPU Saturation

GPU Saturation C2070

GPU Saturation K40c

cuBLAS SGEMM K40c
cuBLAS SGEMM C2070
8 Core CPU MKL SGEMM

Figure 1. Performance of compute kernels on CPU and GPU depending
on problem granularity

Kernels are executed on CPU cores or GPUs depending on
their performance profl e and the occupancy on the target
execution unit. Some kernels experience a huge performance
boost when executed on an accelerator, while some experi-
ence a mild speedup and are better kept executing on CPU
cores. Some can be scheduled eff ciently on either the CPU
or GPU, and ideally the decision is then taken based on
online load balance between the CPU and GPU units.
Compared with CPU cores, a GPU has many more

lightweight computing units; GPU kernels reach their op-
timal eff ciency for larger tile sizes, as they need to dispatch
computation on many individual units to keep the occupancy
high. On the other hand, CPU cores often reach good
eff ciency for moderate or small tile sizes. Figure 1 shows
the different optimal tile sizes for the SGEMM (real single
precision general matrix-matrix multiplication) kernel, on
different environments. Intel MKL SGEMM, running on 8
cores of an Intel Nehalem Xeon E5520 CPU, reaches its
peak performance starting from tile sizes larger than 200;
while in cuBLAS SGEMM, the optimal tile size is larger
than 1000 on a Fermi C2070, and larger than 1500 on a
Kepler K40c. As a consequence, in a heterogeneous envi-
ronment, selecting the proper tile size becomes a dilemma:

• If using the CPU optimal tile size, GPU kernels are
not able to fully utilize the computing resources of the
GPU since the small problem size cannot eff ciently
span over all GPU execution units.

• If using the GPU optimal tile size, given a certain
matrix size N, the amount of exploitable parallelism
is limited by the number of tiles, directly depending on
the tile size (N/B). Thereby, for a f xed size problem,
increasing the tile size proportionally decreases the
parallelism. Furthermore, certain kernels (especially
memory bound kernels) are less eff cient than their
functionally equivalent decomposition into smaller but
more compute bound kernels. Executing these large
kernels is thereby adding synchronous choke points that
delay the execution of other dependent kernels, further
decreasing the occupancy of all compute resources.

Our previous work employed a middle ground solution [9]
by selecting an intermediate tile size, larger than the CPU
optimal, but smaller than the GPU optimal. Clearly, this
tradeoff solution fails to maximize the computing resource

usage for both the CPU and GPU. To address this issue, we
propose here a new solution called “hierarchical DAG”, in
which the tile size decomposition varies depending on the
target unit executing the kernel, a decision taken dynamically
based on the available parallelism.

B. The Hierarchical DAG Approach
The hierarchical method described below can be general-

ized to any number of hierarchies, but for the sake of the
explanation we will consider a two levels hierarchy, GPU
and CPU. Let the optimal tile size for a GPU be B, and
the one for a CPU be a smaller tile size b. First, the input
matrix is divided into NT × NT tiles of size B × B, and
the linear algebra algorithm is represented by a DAG whose
task granularity is B. At the top level, all kernels in the
DAG operate on large tiles, and the corresponding tasks are
pushed into scheduling queues. When retrieving these tasks
from the scheduling queues, a decision algorithm (described
in Algorithm 1) is executed. Ifi t is a GPU kernel, then it can
be executed directly by calling the GPU kernel functions (as
a cuBLAS function). If the kernel needs to be scheduled on
a CPU core (because the kernel does not map well on GPU,
or because GPUs are overloaded with pending work), then,
the CPU kernel is called only if the granularity is bellow
b. Otherwise instead of calling the CPU kernel functions
directly on the large tile, the task is decomposed into a f ner
granularity DAG operating on the smaller tiles of size b.

Algor ithm 1 Generic TASK X(A) code in the “hierarchical
DAG” approach. (b:small tile size)
if OnGPU ||((nbrows(A) < b)||(nbcols(A) < b)) then

ComputeTaskX(A) // by calling kernel function
ReleaseDeps(Task X, A)

else
o = CreateDAG(Task X, A,

ReleaseDeps(Task X, A))
Submit(o)

end if

When a large grain task is scheduled onto a CPU, the
“hierarchical DAG” capable runtime decomposes the CPU
workload into a f ner grain parallelism that is more adequate
for this type of execution units. The creation of the metadata
representing the f ne grain DAG happens online; no pre-
processing or static decomposition is required. The runtime
engine creates a local data descriptor, a different view of
the input submatrix representing the large tile divided into
smaller tiles. A new DAG is created to represent the f ne
grain decomposition of the task’s algorithm applied on these
smaller tiles. Tasks operating on large tiles that are scheduled
for execution on the CPU are divided into f ner grain tasks
operating on nt× nt tiles of size b (B = nt× b); the shape of
the resulting multi-level graph for the Cholesky factorization
is presented in Figure 2. These f ne grain tasks are pushed

How big should a task be?

07/11/2024 5

 Small enough to get parallelism to feed all processing units
 Large enough to efficiently use the processing units

From PARSEC :
« Hierarchical DAG Scheduling for
Hybrid Distributed Systems »,
Wu, Bouteiller, Bosilca, Faverge, Dongarra

How big should a task be?

07/11/2024 6

GPUs
 Efficient only with large tile sizes
CPUs
 Need many tasks

→ Hybrid task sizes

More generally, recursive task graphs
 Seen at CEA, in OmpSs, PaRSEC, StarPU

STF : Sequential Task Flow, recursive version

07/11/2024 7

float V[256] ;
starpu_handle vect;
starpu_handle svec[PARTS] ;

int main(void)
{

vector_data_register(&vec, V, 256, sizeof(*v)) ;
data_partition_plan(vec, PARTS, svec) ;
submit_tasks(svec) ;
...

}

STF : Sequential Task Flow, recursive version

07/11/2024 8

void submit_tasks(starpu_data_handle_t *handles)
{
 for (int i = 0 ; i<PARTS ; i++)
 starpu_task_insert(&vector_scal, STARPU_RW, svec[i], 0) ;
}

STF : Sequential Task Flow, recursive version

07/11/2024 9

float V[256] ;
starpu_handle vect;
starpu_handle svec[PARTS];

int main(void)
{

vector_data_register(&vec, V, 256, sizeof(*v));
data_partition_plan(vec, PARTS, svec);
for (int i = 0 ; i < PARTS ; i++)
 data_partition_plan(svec[i], PARTS, &ssvec[i*PARTS]);
submit_tasks(parent_arg, 1);
...

}

STF : Sequential Task Flow, recursive version

07/11/2024 10

int is_rec(struct rec_args *arg) {
 return arg->subparts[0] != NULL;
}
void submit_tasks(struct rec_arg *rec_args, int n) {
 for (int i=0 ; i<n ; i++)
 starpu_task_insert(&vector_scal,
 FUNC_REC, &is_rec, REC_ARG, rec_args[i],
 GEN_DAG, &gen_dag, GEN_ARG, rec_args[i],
 STARPU_RW, rec_args[i]->h, 0);
}
void gen_dag(struct rec_arg *args) {
 submit_tasks(arg->subparts, PARTS);
}

STF : Sequential Task Flow, recursive version

07/11/2024 11

Can leverage tiled algorithm expression
 In Chameleon, just structure sugar around existing tiled algorithms
 Immediately get various recursive task graphs

 potrf, getrf, poinv, posv, potri...

And let runtime decide how deep to recurse
 Larger tasks for GPUs
 Smaller tasks for CPUs

Ideally, let runtime decide among a scale of granularities
 e.g. 7680 / 3840 / 1920 / 960 / 480

Can’t we rather use parallel tasks?

07/11/2024 12

 Large tasks for GPUs
 Parallel tasks on CPUs

Parallel tasks are not perfect
 e.g. idle time at beginning and end of POTRF
 better expose the inner lack of parallelism
 i.e. the subtaskgraph

 To overlap the lack of parallelism

2. Granularity steering

07/11/2024 13

Illustrative example

07/11/2024 14

2 GPUs way faster than 1 CPU core
 Need 760 GEMMs to have some to give to CPU

2 GPUs not that faster than 62 CPU cores
 With 21 GEMMs, can afford splitting one for CPU

But ratios depend on ready tasks types
 Better split TRSM tasks
 e.g. split 0% GEMM, 0% SYRK, 70% TRSM

Finding splitting ratios?

07/11/2024 15

Depends on situation
 Lot of parallelism available

– No need to split
– Can run large tasks on CPUs
– Leverage largest-tile choices

 Lacking parallelism
– Produce parallelism while keeping an eye on efficiency

 Availability of different task types
– Better split tasks that split efficiently

Linear programming

07/11/2024 16

Linear programming

07/11/2024 17

 Takes something like 0.1ms-2ms to solve (GLPK) for the tested matrices
 Can afford solving it every 50 tasks for instance

Result:
 Splitting ratio for each type of task

– According to the current state of ready tasks

Splitter
 Strive to reach the ratios, and progressively
 Split if

– ratio not met yet
– and not enough tasks for CPUs

3. Results

07/11/2024 18

Experiments

07/11/2024 19

Cholesky, LU, and other po*
 2 A100 GPUs
 2 AMD Zen3 EPYC 7513 2.6 GHz 32 cores → 64 cores
 DMDAR scheduler

Cholesky

07/11/2024 20

Cholesky

07/11/2024 21

Cholesky

07/11/2024 22

Cholesky

07/11/2024 23

LU

07/11/2024 24

07/11/2024 25

Conclusion

07/11/2024 26

Recursive task graphs
 Flexible way to express parallelism
 Let runtime decide granularity

Dynamic granularity decision
 Adapts to runtime situation

– No manual tuning
 On par with state-of-the-art performance

Future work

07/11/2024 27

Refine splitting decision
 Take care of critical path in the task graph

Leverage compilation
 Generate recursive expression automatically?

Going distributed
 Allow automatic pruning?

NumPEx

Retrouvez toutes nos actualités

