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Context



Thèse

Thesis Topic: (starting 01/10/2023)
Disambiguation of C++ Complexity for Advanced Program Optimization
and Parallelization.

• Programme de recherche exploratoire (PEPR) Numérique pour l’exascale
(NumPEx)

◦ Work Package 1
Efficient and composable programming models.

◦ Work Package 2
Just-in-Time code optimization with continuous feedback loop.
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Simulation code

• Complex code with multiple computational kernels and numerous
nested loops

• Supercomputer with millions of multi-architecture cores
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Changing Simulation Programming Language

With the evolution of programming paradigms and architectures, the CEA
needs to modernize the language used to write simulation code.

• Transition from Fortran to C++.
• Need to replace old Fortran technologies.
• Need to provide developers with tools to easily program simulation
codes in C++.

A choice has been made to use the Kokkos library to provide a high-level
abstraction of parallelism.
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Kokkos

What is Kokkos ?
• Modern C++ template library
• Developed by the United States Department of Energy
• Abstraction of parallelism
• Performance portability across different architectures (CPU, GPU)
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Kokkos: Stencil example C++ code

1 void stencil(float *A, float *B, long m, long n)
{

3 for (int i = 1; i < m - 1; i++)
for (int j = 1; j < n - 1; j++)

5 B[i * n + j] = A[i * n + j] + A[i * n + (j - 1)] + A[i * n + (j + 1)] +
A[(i - 1) * n + j] + A[(i + 1) * n + j];

7 }

Listing 1: Native C++ code of stencil
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Kokkos: Stencil example code

1 void stencil(Kokkos::View<float**> &A, Kokkos::View<float**> &B, long m, long n)
{

3 const auto policy = Kokkos::MDRangePolicy<
Kokkos::Serial,

5 Kokkos::Rank<2>
>({1, 1}, {m - 1, n - 1});

7
Kokkos::parallel_for(policy, KOKKOS_LAMBDA(long i, long j) {

9 B(i, j) = A(i, j) + A(i, j - 1) + A(i, j + 1) + A(i - 1, j) + A(i + 1, j);
});

11 }

Listing 2: Kokkos code of stencil
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Kokkos optimizations

• Performance optimization:
◦ Manual structure of code optimizations (linear array, tilling).
◦ Preprocessor macros can be used to enable optimizations.

• Performance portability:
◦ Kokkos provides a high-level abstraction of parallelism.
◦ Code written with Kokkos can be executed on different architectures.
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Objectives

The main objective is:
• Understand the structure of Kokkos codes.
• Propose a transparent solution to the user to optimize the code.
• Evaluate the performance of the proposed solution.

Kokkos remarks:
• GPU like writing kernels (users do not have to write loops).
• Natural loops with constant lower/upper bounds and a regular iteration
space.

To do this, we will use the Polyhedral Model to optimize the code.
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Polyhedral Model

What is the Polyhedral Model?
• A mathematical representation of loop nests in a program using
polyhedra within a multidimensional space.

• Enables linear transformations of loops to optimize memory access,
reduce dependencies, reorganize instructions, cache locality,
vectorization, loop tilling and identify parallelism opportunities.
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Constraints for Applying the Polyhedral Model

• Static Control Parts (SCoPs):
◦ Code must be composed of regions where control flow is statically
predictable.

• Affine Loop Bounds
• Affine Array Accesses
• No Side Effects
• Single Entry and Exit Points
• No Irregular Control Flow

◦ Avoid irregular control flow constructs like goto statements or early exits.
• Data Dependence Analysis:

◦ Code should allow for clear determination of read and write accesses to
memory locations.
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Polyhedral Model Example

Visual representation of a polyhedral transformation:

Figure 1: Polyhedral representation of a skewing transformation
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Polyhedral Model Example

1 for (int i = 1; i < n - 1; i++)
for (int j = 1; j < m - 1; j++)

3 A[i][j] = A[i][j] + A[i + 1][j] + A[i][j + 1];

Listing 3: Stencil before transformation

1 for (int i = 0; i <= n + m - 2; i++) {
int lbj = max(0, i - n + 1);

3 int ubj = min(i, m - 1);
#pragma omp parallel for

5 for (int j = lbj; j <= ubj; j++)
A[(i - j)][j] = A[(i - j)][j] + A[(i - j)][j + 1] + A[(i - j) + 1][j];

7 }

Listing 4: Stencil after transformation
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Several Polyhedral Tools

• Polly:
◦ An LLVM project that provides a polyhedral optimizer for LLVM.
◦ Transforms loop nests in LLVM intermediate representation (IR) to optimize
performance.

• Pluto:
◦ A polyhedral optimizer for C programs.
◦ Transforms loop nests in C code to optimize performance.

• Apollo:
◦ A runtime polyhedral optimizer.
◦ Transforms loop nests based on runtime behavior.
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Constraints of Kokkos Codes

Application of the Polyhedral Model on Kokkos Codes:
• Regular ”perfect” loops for the application of the polyhedral model.
• Code already parallelized.
• C++ too complex for the source code to be analyzed.
• Complexity of the analysis due to the complexity of the generated code.
• Targets different architectures.

Currently no tools are able to apply the polyhedral model to Kokkos codes.
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Why polly ?

• Analyzes and optimizes loop nests directly in LLVM intermediate
representation.

• Disambiguation of the C++ complexity.
• Simple to use, directly integrated in LLVM.
• Provides a set of optimization options to transform loop nests.
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Polly modifications

• Manual search of SCoPs
• Interprocedural analysis to extend and inline functions in order to
maximize the size of SCoPs.
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Kokkos modifications

Polly’s modifications is not enough we need to modify Kokkos:
• Modification of the user API to allow the addition of an option to give
the user the choice to use instrumentation for Polly.

• Rewriting of the Serial backend to have clean loops (remove tiles).
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Kokkos modifications

1 void stencil(Kokkos::View<float**> &A, Kokkos::View<float**> &B, long m, long n)
{

3 const auto policy = Kokkos::MDRangePolicy<
Kokkos::Serial,

5 Kokkos::Rank<2>
>({1, 1}, {m - 1, n - 1});

7
Kokkos::parallel_for<Kokkos::usePolyOpt >(policy, KOKKOS_LAMBDA(long i, long j) {

9 B(i, j) = A(i, j) + A(i, j - 1) + A(i, j + 1) + A(i - 1, j) + A(i + 1, j);
});

11 }

Listing 7: Kokkos code of stencil with modification
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Current work

• Currently no results.
• Only applicable on Serial Kokkos backend.
• The SCoPs search still depends on code generation.
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Questions?
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