
Scientific presentation (WP4)

Atte Torri
7 November 2024

Celeste, distributed tensor-train rounding, and
tensor-train scalar product contraction ordering

Objectives

Objectives

Create a tensor-based solver

• In modern and parametrised C++

• With multi-level task-based parallelism

• Supporting heterogeneous (CPU+GPU) and distributed architectures

• With good scalability

• Using tensor decompositions
➡ Designing and implementing task-based algorithms for tensor

decompositions

Definitions

Definitions

Tensors

a2a1a0a

Scalar

x ∈ ℝ

Definitions
Tensors

Scalar

a1

a0

a2

a

x ∈ ℝ

Definitions
Tensors

Scalar Vector

a1

a0

a2

a

x ∈ ℝnx ∈ ℝ

Definitions
Tensors

a12

a02

a22

a11

a01

a21

a00

a10

a20

a1

a0

a2

a

Scalar Vector

x ∈ ℝ

Definitions
Tensors

x ∈ ℝn

Scalar Vector

a1

a0

a2

a a12

a02

a22

a11

a01

a21

a00

a10

a20

x ∈ ℝ

Definitions
Tensors

x ∈ ℝn

Scalar Vector

a1

a0

a2

a a12

a02

a22

a11

a01

a21

a00

a10

a20

Matrix

X ∈ ℝn1×n2x ∈ ℝ

Definitions
Tensors

x ∈ ℝn

a101

a001

a201

a121

a021

a221

a111

a011

a211

a101

a001

a201

a121

a021

a221

a111

a011

a211

a100

a000

a200

a120

a020

a220

a110

a010

a210

a10

a00

a20

a12

a02

a22

a11

a01

a21

a a1

a0

a2

Scalar Vector Matrix

x ∈ ℝ

Definitions
Tensors

x ∈ ℝn X ∈ ℝn1×n2

a10

a00

a20

a12

a02

a22

a11

a01

a21

a a1

a0

a2

a102

a002

a202

a121

a021

a222

a111

a011

a212

a101

a001

a201

a121

a021

a221

a111

a011

a211

a100

a000

a200

a120

a020

a220

a110

a010

a210

Scalar Vector Matrix

x ∈ ℝ

Definitions
Tensors

x ∈ ℝn X ∈ ℝn1×n2

a10

a00

a20

a12

a02

a22

a11

a01

a21

a a1

a0

a2

a102

a002

a202

a121

a021

a222

a111

a011

a212

a101

a001

a201

a121

a021

a221

a111

a011

a211

a100

a000

a200

a120

a020

a220

a110

a010

a210

Scalar Vector Matrix

x ∈ ℝ

Definitions
Tensors

x ∈ ℝn X ∈ ℝn1×n2

a10

a00

a20

a12

a02

a22

a11

a01

a21

a a1

a0

a2

a102

a002

a202

a121

a021

a222

a111

a011

a212

a101

a001

a201

a121

a021

a221

a111

a011

a211

a100

a000

a200

a120

a020

a220

a110

a010

a210

Scalar Vector Matrix 3D Tensor

𝒳 ∈ ℝn1×n2×…×ndx ∈ ℝ

Definitions
Tensors

x ∈ ℝn X ∈ ℝn1×n2

Definitions
Tensor-Train (TT)

n2

n3

nd

n1

Definitions
Tensor-Train (TT)

…

ndn3n2n1
r1 r2 …

𝒳(i1, …, id) =
r0,r1,…,rd

∑
α0,α1,…,αd

𝒢1(α0, i1, α1)…𝒢d(αd−1, id, αd)

Definitions

Gives an approximation of the tensor with it’s memory footprint reduces from to O(nd) O(dnr2)

Tensor-Train (TT)

𝒳 ∈ ℝn1×n2×…×nd

r1 r2 …
n1 n2 n3 nd

m1 m2 m3 md

TT-Vector TT-Matrix

ndn3n2n1
r1 r2 …

𝒳(i1, …, id) =
r0,r1,…,rd

∑
α0,α1,…,αd

𝒢1(α0, i1, α1)…𝒢d(αd−1, id, αd) 𝒳(i1, …, id, j1, …, jd) =
r0,r1,…,rd

∑
α0,α1,…,αd

𝒢1(α0, i1, j1, α1)…𝒢d(αd−1, id, jd, αd)

Definitions
Tensor-Train (TT)

𝒳 ∈ ℝn1n2…nd 𝒳 ∈ ℝn1n2…nd×m1m2…md

TT Arithmetic
Definitions

Definitions
Sum in TT format

+

𝒳 𝒴

The rank of the result is not necessarily optimal it may be tightenedThe sum of two TT of rank and is a TT of rank ⃗r ⃗q ⃗r + ⃗q

n1 n2 n3 nd−1 nd

r1 r2 … rd−1

n1 n2 n3 nd−1 nd

q1 q2 … qd−1

Definitions
Sum in TT format

+

𝒵 = 𝒳 + 𝒴

The rank of the result is not necessarily optimal it may be tightenedThe sum of two TT of rank and is a TT of rank ⃗r ⃗q ⃗r + ⃗q

n1 n2 n3 nd−1 nd

r 1
+ q 1

r 2
+ q 2

… r d−
1

+
q d−

1

Definitions
Matrix-Vector product in TT format

n1

n2

n3

nd−1

nd

q1

q2

…

qd−1rd−1

…

r2

r1

md

md−1

m3

m2

m1

The rank of the result is not
necessarily optimal it may be

tightened

The result of a matrix-vector
product of a TT-Matrix of rank
and a TT-vector of rank a TT-

Vector of rank

⃗r
⃗q

⃗r ∘ ⃗q

A x

nd

nd−1

n3

n2

n1

m1

m2

m3

md−1

md

r1q1

r2q2

…

rd−1qd−1

Definitions
Matrix-Vector product in TT format

The rank of the result is not
necessarily optimal it may be

tightened

The result of a matrix-vector
product of a TT-Matrix of rank
and a TT-vector of rank a TT-

Vector of rank

⃗r
⃗q

⃗r ∘ ⃗q

b = Ax

Definitions
TT Orthogonalisation

Definitions
TT Orthogonalisation

n1 n2 n3 n4 n5

r1 r2 r3 r4

A tensor-train is orthogonal if all of it’s cores are orthogonal except one of the extremities

QrQR()

Definitions
TT Orthogonalisation

n1 n2 n3 n4 n5

r1 r2 r3 r4

Apply a QR decomposition on the matricization of the first core of the TT

r

Definitions
TT Orthogonalisation

Q r

n1 n2 n3 n4 n5

r1 r2 r3 r4

Apply a QR decomposition on the matricization of the first core of the TT

r

Definitions
TT Orthogonalisation

n1 n2 n3 n4 n5

r2 r3 r4

This gives a new orthogonal core of rank (we may have)r′￼ r′￼ < r

r

Definitions
TT Orthogonalisation

n1 n2 n3 n4 n5

r′￼1 r2 r3 r4

This gives a new orthogonal core of rank (we may have)r′￼ r′￼ < r

r

Definitions
TT Orthogonalisation

n1 n2 n3 n4 n5

r′￼1 r2 r3 r4

This gives a new orthogonal core of rank (we may have)r′￼ r′￼ < r

r

QR()

Definitions
TT Orthogonalisation

n1 n2 n3 n4 n5

r′￼1 r2 r3 r4

Apply a QR decomposition on the matricization of the second core of the tensor-train

rQ

r

QR()

Definitions
TT Orthogonalisation

n1 n2 n3 n4 n5

r′￼1 r2 r3 r4

Apply a QR decomposition on the matricization of the second core of the tensor-train

rQ

r

Definitions
TT Orthogonalisation

n1 n2 n3 n4 n5

r′￼1 r2 r3 r4

Apply a QR decomposition on the matricization of the second core of the tensor-train

r

Definitions
TT Orthogonalisation

n1 n2 n3 n4 n5

r′￼1 r3 r4

This gives a new orthogonal core of rank (we may have)r′￼ r′￼ < r

r

Definitions
TT Orthogonalisation

n1 n2 n3 n4 n5

r′￼1 r′￼2 r3 r4

This gives a new orthogonal core of rank (we may have)r′￼ r′￼ < r

r

Definitions
TT Orthogonalisation

n1 n2 n3 n4 n5

r′￼1 r′￼2 r3 r4

This gives a new orthogonal core of rank (we may have)r′￼ r′￼ < r

r

Definitions
TT Orthogonalisation

n1 n2 n3 n4 n5

r′￼1 r′￼2 r4

Apply the same operation on all remaining cores except the last one

r

Definitions
TT Orthogonalisation

n1 n2 n3 n4 n5

r′￼1 r′￼2 r′￼3 r4

Apply the same operation on all remaining cores except the last one

r

Definitions
TT Orthogonalisation

n1 n2 n3 n4 n5

r′￼1 r′￼2 r′￼3 r4

Apply the same operation on all remaining cores except the last one

r

Definitions
TT Orthogonalisation

n1 n2 n3 n4 n5

r′￼1 r′￼2 r′￼3

Apply the same operation on all remaining cores except the last one

r

Definitions
TT Orthogonalisation

n1 n2 n3 n4 n5

r′￼1 r′￼2 r′￼3 r′￼4

Apply the same operation on all remaining cores except the last one

r

Definitions
TT Orthogonalisation

n1 n2 n3 n4 n5

r′￼1 r′￼2 r′￼3 r′￼4

The result is called a left-orthogonal tensor-train
After orthogonalisation, an error introduced in the non-orthogonal core yields the same error introduced in the full TT

Definitions
TT Rounding

n1 n2 n3 n4 n5

r′￼1 r′￼2 r′￼3 r′￼4

Rounding a TT is a series of SVDs on an orthogonal TT (this lowers it's rank similarly to TT-SVD on a full tensor)

Definitions
TT Rounding

SVD()

n1 n2 n3 n4 n5

r′￼1 r′￼2 r′￼3 r′￼4

Apply an SVD on the only non-orthogonal core of the tensor train, reducing it's rank and orthogonalising it

VTUΣ

Definitions
TT Rounding

SVD()

n1 n2 n3 n4 n5

r′￼1 r′￼2 r′￼3 r′￼4

Apply an SVD on the only non-orthogonal core of the tensor train, reducing it's rank and orthogonalising it

UΣ

Definitions
TT Rounding

VTUΣ

n1 n2 n3 n4 n5

r′￼1 r′￼2 r′￼3 r′￼4

Apply an SVD on the only non-orthogonal core of the tensor train, reducing it's rank and orthogonalising it

Definitions
TT Rounding

UΣ

n1 n2 n3 n4 n5

r′￼1 r′￼2 r′￼3

Apply an SVD on the only non-orthogonal core of the tensor train, reducing it's rank and orthogonalising it

UΣ

Definitions
TT Rounding

n1 n2 n3 n4 n5

r′￼1 r′￼2 r′￼3 r′￼′￼4

Apply an SVD on the only non-orthogonal core of the tensor train, reducing it's rank and orthogonalising it

Definitions
TT Rounding

VTUΣSVD()

n1 n2 n3 n4 n5

r′￼1 r′￼2 r′￼3 r′￼′￼4

Continue applying SVD on the remaining cores one by one until the last one

UΣ

Definitions
TT Rounding

VTUΣ

n1 n2 n3 n4 n5

r′￼1 r′￼2 r′￼3 r′￼′￼4

Continue applying SVD on the remaining cores one by one until the last one

Definitions
TT Rounding

UΣ

n1 n2 n3 n4 n5

r′￼1 r′￼2 r′￼′￼4

Continue applying SVD on the remaining cores one by one until the last one

Definitions
TT Rounding

UΣ

n1 n2 n3 n4 n5

r′￼1 r′￼2 r′￼′￼3 r′￼′￼4

Continue applying SVD on the remaining cores one by one until the last one

Definitions
TT Rounding

UΣ

n1 n2 n3 n4 n5

r′￼1 r′￼′￼3 r′￼′￼4

Continue applying SVD on the remaining cores one by one until the last one

Definitions
TT Rounding

UΣ

n1 n2 n3 n4 n5

r′￼1 r′￼′￼2 r′￼′￼3 r′￼′￼4

Continue applying SVD on the remaining cores one by one until the last one

Definitions
TT Rounding

UΣ

n1 n2 n3 n4 n5

r′￼′￼2 r′￼′￼3 r′￼′￼4

Continue applying SVD on the remaining cores one by one until the last one

Definitions
TT Rounding

UΣ

n1 n2 n3 n4 n5

r′￼′￼1 r′￼′￼2 r′￼′￼3 r′￼′￼4

The result is a rank-optimal tensor-train

Definitions

Task-based parallelism

A

B

C

D

E

F

G

H I

CPU 1

GPU 1

GPU 2

Definitions
Task-based parallelism

Tasks are interdependent and form a task graph. The graph is then scheduled by the runtime

Celeste

Interface

Task

Codelets

TensorKernels CPU

Kernels CUDA GPUTensor

Distributed Tensor

Distribution

Tile

cuTENSORStarPU

Chameleon
(Compose)Distributed Martix

Interface

Task

Codelets

TensorKernels CPU

Kernels CUDA GPUTensor

Distributed Tensor

Distribution

Tile

cuTENSORStarPU

Chameleon
(Compose)Distributed Matrix

Celeste

Distributed tiled tensor-train rounding

Distributed tiled tensor-train rounding
Problem definition

• Current state-of-the-art only works well on tensor-trains with a 1D
distribution of tiles

• Best case for 1D distribution is small ranks and large external dimensions,
which may not be the case when rounding is done

• Objective to perform the rounding operation on tiled tensor-trains with a
3D block-cyclic (3DBC) distribution

• Problem of 3D distribution is that when matricized we do not get a nice 2D
block-cyclic (2DBC) distribution

• Implementation in Celeste with StarPU and Chameleon
[1] Hussam Al Daas, Grey Ballard, and Peter Benner, “Parallel Algorithms for Tensor Train Arithmetic”, SIAM J. Sci. Comput., 2022

[1]

Distributed tiled tensor-train rounding
Orthogonalization steps with HQR

• Matricize a factor of the tensor train vertically

• Transform 3DBC into 2DBC by a permutation of rows

• Compute QR using Chameleon hierarchical QR (HQR)

• Update the following factor with a high priority

• Update the current factor with a lower priority

• In our case the permutation is implicitly obtained by having two co-
existing aliases of the same matrix

Ud

PUd = QR ⟹ Ud = P−1QR

P

Ud+1 ← RUd+1

Ud ← P−1Q

Distributed tiled tensor-train rounding
Rounding steps with randSVD

• Matricize a factor of the tensor train horizontally

• Compute random projection

• Compute QR using Chameleon hierarchical QR (HQR)

• Extract

• Update the next factor

• Replace current factor

Ud

PUdΩ = QR ⟹ UdΩ = P−1QR

B = P−1QTUd

UdΩ

Ud−1 ← BUd−1

Ud ← P−1Q

Distributed Tensor

CelesteCeleste

Interface

Task

Codelets

TensorKernels CPU

Kernels CUDA GPUTensor

Distributed Tensor

Distribution

Tile

cuTENSORStarPU

Chameleon
(Compose)Distributed Matrix

Distributed tensors

Distributed Tensor

• Implemented basic arithmetic (addition, element-wise multiplication, etc) as task-based and distributed (MPI)
• Uses distributed Tiles for tiling
• Uses a Distribution specified when constructed to know how to distribute tiles, by default nD block-cyclic
• Uses a Container for tiles specified upon construction, by default a container implemented with a hash-map on

multi-linear tile indices to keep knowledge of only some tiles in memory

P2

P0

P0

P2

P0

P0

P3

P1

P1

P6

P4

P4

P6

P4

P4

P7

P5

P5

P2

P0

P0

P2

P0

P0

P3

P1

P1

Celeste::Dist::Dense::Tensor<DataType> A(dimSize, tileSize);
Celeste::Dist::Dense::Tensor<DataType> B(dimSize, tileSize);
Celeste::Dist::Dense::Tensor<DataType> C(dimSize, tileSize);
Celeste::Dist::Dense::Tensor<DataType> D(dimSize, tileSize);
Celeste::Dist::Dense::Tensor<DataType> ans(dimSize, tileSize);
starpu_task_wait_for_all();
std::vector<size_t> perm{2, 1, 0};
A.perm(perm);
starpu_task_wait_for_all();
auto fl = 3.0;
auto res = A + B - fl * (C + D);

Celeste
Distributed tensors

Distributed Tensor

P2

P0

P0

P2

P0

P0

P3

P1

P1

P6

P4

P4

P6

P4

P4

P7

P5

P5

P2

P0

P0

P2

P0

P0

P3

P1

P1

Celeste::Dist::Dense::Tensor<DataType> A(dimSize, tileSize);
Celeste::Dist::Dense::Tensor<DataType> B(dimSize, tileSize);
Celeste::Dist::Dense::Tensor<DataType> C(dimSize, tileSize);
Celeste::Dist::Dense::Tensor<DataType> D(dimSize, tileSize);
Celeste::Dist::Dense::Tensor<DataType> ans(dimSize, tileSize);
starpu_task_wait_for_all();
std::vector<size_t> perm{2, 1, 0};
A.perm(perm);
starpu_task_wait_for_all();
auto fl = 3.0;
auto res = A + B - fl * (C + D);

• Implemented basic arithmetic (addition, element-wise multiplication, etc) as task-based and distributed (MPI)
• Uses distributed Tiles for tiling
• Uses a Distribution specified when constructed to know how to distribute tiles, by default nD block-cyclic
• Uses a Container for tiles specified upon construction, by default a container implemented with a hash-map on

multi-linear tile indices to keep knowledge of only some tiles in memory

Celeste
Distributed tensors

Distributed Tensor

P2

P0

P0

P2

P0

P0

P3

P1

P1

P6

P4

P4

P6

P4

P4

P7

P5

P5

P2

P0

P0

P2

P0

P0

P3

P1

P1

Celeste::Dist::Dense::Tensor<DataType> A(dimSize, tileSize);
Celeste::Dist::Dense::Tensor<DataType> B(dimSize, tileSize);
Celeste::Dist::Dense::Tensor<DataType> C(dimSize, tileSize);
Celeste::Dist::Dense::Tensor<DataType> D(dimSize, tileSize);
Celeste::Dist::Dense::Tensor<DataType> ans(dimSize, tileSize);
starpu_task_wait_for_all();
std::vector<size_t> perm{2, 1, 0};
A.perm(perm);
starpu_task_wait_for_all();
auto fl = 3.0;
auto res = A + B - fl * (C + D);

• Support partitioning, for now only 3D tiled tensors into 2D tiles
• Requires splitting of the tensor tiles along one of its dimensions
• The splitting generates Partition objects which contain the data handles to be given to a Matrix type object

(connection is not yet done)

Celeste
Distributed tensors

Distributed Tensor

Celeste

Interface

Task

Codelets

TensorKernels CPU

Kernels CUDA GPUTensor

Distributed Tensor

Distribution

Tile

cuTENSORStarPU

Chameleon
(Compose)Distributed Matrix

Distributed tensors

Chameleon
(Compose)

Interface

Task

Codelets

TensorKernels CPU

Kernels CUDA GPUTensor

Distributed Tensor

Distribution

Tile

cuTENSORStarPU

Distributed Matrix Chameleon
(Compose)

Celeste

Chameleon
(Compose)

• Small abstraction layer on top of Chameleon
• Descriptors are managed by a separate class for better

memory management (automatic descriptor destruction)
• 2 types of descriptors, owning descriptors that manage

data and non-owning descriptors that are aliases of other
descriptors or concatenations

• Descriptors have a set distribution (lifetime is tied by
ownership)

• Non-owning descriptors need to transform indices from
their distribution to the underlying distribution

• Modified Chameleon to support aliasing well, to share data
handles and other between multiple descriptors

Chameleon integration into Celeste
Celeste

Chameleon
(Compose)

Interface

Task

Codelets

TensorKernels CPU

Kernels CUDA GPUTensor

Distributed Tensor

Distribution

Tile

cuTENSORStarPU

Distributed Matrix

Chameleon integration into Celeste

Chameleon
(Compose)

Celeste

Chameleon
(Compose)

Interface

Task

Codelets

TensorKernels CPU

Kernels CUDA GPUTensor

Distributed Tensor

Distribution

Tile

cuTENSORStarPU

Distributed MatrixDistributed Matrix

Celeste

Distributed Matrix

• Matrix class implemented on top of descriptor abstraction
• This class contains all operations that can be performed on

distributed matrices (GEMM, QR, HQR, random, fill, etc)
• Serves to separate memory management (Descriptor

classes) and operations (Matrix class) cleanly
• Used as top-level class to implement randSVD for

truncation
• We use aliases to have 3D block-cyclic horizontal and

vertical representations of our matricized tensor-train
cores, as well as a 2D block-cyclic permuted alias of the
vertical matricization

Celeste
TT-rounding by execution with matrices

Distributed Matrix

TT-rounding by execution with matrices
Celeste

TT-rounding by execution with matrices
Celeste

Chameleon
(Compose)

Interface

Task

Codelets

TensorKernels CPU

Kernels CUDA GPUTensor

Distributed Tensor

Distribution

Tile

cuTENSORStarPU

Distributed Matrix

TT-rounding by execution with matrices

Distributed Matrix

Celeste

Efficient contraction ordering strategies for
tensor-train scalar product

Efficient contraction ordering strategies for TT scalar product

• Exploration of quasi-optimal contraction strategies for Tensor-Train scalar product

• NP-hard problem in general contraction network

• For general tensor networks, state-of-the-art methods use greedy edge-sorting
algorithms, recursive network partitioning, or transforming the network into a tree of
contractions

• We developed two near-optimal polynomial time algorithms

• Paper submitted to IPDPS 2025

Problem definition

Sweeping algorithm

• Solve the problem for windows that consider
all possible orderings for three contractions

• Each window generates subproblems to be
solved

• One contraction weight gets carried over as
a multiplicative factor to the next window for
each subproblem

• The best cost overall is determined by the
last window

Efficient contraction ordering strategies for TT scalar product

Each window generates multiple subproblems with a
multiplicative factor

-optimal algorithmΔ

• Divide the tensor network into all possible rectangular
windows

• Use the optimal solver to find solutions for all windows
smaller than

• Combine windows larger than using dynamic
programming

• Each window of size s > is a sequence of windows
smaller than , thus only the splits into t + u = s such
that t < or u < need to be considered

Δ

Δ

Δ
Δ

Δ Δ
Solve optimally windows smaller than and

combine them into larger solutions
Δ

Efficient contraction ordering strategies for TT scalar product

xTy xTyQuantized Random

Efficient contraction ordering strategies for TT scalar product
Results

xT Ay xT AyQuantized Random

Efficient contraction ordering strategies for TT scalar product
Results

