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Objectives

Create a tensor-based solver 

• In modern and parametrised C++ 

• With multi-level task-based parallelism 

• Supporting heterogeneous (CPU+GPU) and distributed architectures 

• With good scalability 

• Using tensor decompositions 
➡  Designing and implementing task-based algorithms for tensor 

decompositions
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ndn3n2n1
r1 r2 …

𝒳(i1, …, id) =
r0,r1,…,rd

∑
α0,α1,…,αd

𝒢1(α0, i1, α1)…𝒢d(αd−1, id, αd)

Definitions

Gives an approximation of the tensor with it’s memory footprint reduces from  to O(nd) O(dnr2)

Tensor-Train (TT)

𝒳 ∈ ℝn1×n2×…×nd



r1 r2 …
n1 n2 n3 nd

m1 m2 m3 md

TT-Vector TT-Matrix

ndn3n2n1
r1 r2 …

𝒳(i1, …, id) =
r0,r1,…,rd

∑
α0,α1,…,αd

𝒢1(α0, i1, α1)…𝒢d(αd−1, id, αd) 𝒳(i1, …, id, j1, …, jd) =
r0,r1,…,rd

∑
α0,α1,…,αd

𝒢1(α0, i1, j1, α1)…𝒢d(αd−1, id, jd, αd)

Definitions
Tensor-Train (TT)

𝒳 ∈ ℝn1n2…nd 𝒳 ∈ ℝn1n2…nd×m1m2…md
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Definitions
Sum in TT format

+

𝒳 𝒴

The rank of the result is not necessarily optimal it may be tightenedThe sum of two TT of rank  and  is a TT of rank ⃗r ⃗q ⃗r + ⃗q

n1 n2 n3 nd−1 nd

r1 r2 … rd−1

n1 n2 n3 nd−1 nd

q1 q2 … qd−1



Definitions
Sum in TT format

+

𝒵 = 𝒳 + 𝒴

The rank of the result is not necessarily optimal it may be tightenedThe sum of two TT of rank  and  is a TT of rank ⃗r ⃗q ⃗r + ⃗q

n1 n2 n3 nd−1 nd

r 1
+ q 1

r 2
+ q 2

… r d−
1

+
q d−

1
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Matrix-Vector product in TT format
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The rank of the result is not 
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The result of a matrix-vector 
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and a TT-vector of rank  a TT-
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Definitions
Matrix-Vector product in TT format

The rank of the result is not 
necessarily optimal it may be 

tightened

The result of a matrix-vector 
product of a TT-Matrix of rank   
and a TT-vector of rank  a TT-

Vector of rank 

⃗r
⃗q

⃗r ∘ ⃗q

b = Ax
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Definitions
TT Orthogonalisation

n1 n2 n3 n4 n5

r1 r2 r3 r4

A tensor-train is orthogonal if all of it’s cores are orthogonal except one of the extremities



QrQR( )

Definitions
TT Orthogonalisation

n1 n2 n3 n4 n5

r1 r2 r3 r4

Apply a QR decomposition on the matricization of the first core of the TT
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Apply a QR decomposition on the matricization of the first core of the TT
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This gives a new orthogonal core of rank  (we may have )r′￼ r′￼ < r
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n1 n2 n3 n4 n5

r′￼1 r2 r3 r4

Apply a QR decomposition on the matricization of the second core of the tensor-train
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n1 n2 n3 n4 n5
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Apply a QR decomposition on the matricization of the second core of the tensor-train
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Apply a QR decomposition on the matricization of the second core of the tensor-train
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Apply the same operation on all remaining cores except the last one
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Apply the same operation on all remaining cores except the last one
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n1 n2 n3 n4 n5

r′￼1 r′￼2 r′￼3 r′￼4

Apply the same operation on all remaining cores except the last one
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Definitions
TT Orthogonalisation

n1 n2 n3 n4 n5

r′￼1 r′￼2 r′￼3 r′￼4

The result is called a left-orthogonal tensor-train 
After orthogonalisation, an error introduced in the non-orthogonal core yields the same error introduced in the full TT



Definitions
TT Rounding

n1 n2 n3 n4 n5

r′￼1 r′￼2 r′￼3 r′￼4

Rounding a TT is a series of SVDs on an orthogonal TT (this lowers it's rank similarly to TT-SVD on a full tensor)



Definitions
TT Rounding

SVD( )

n1 n2 n3 n4 n5

r′￼1 r′￼2 r′￼3 r′￼4

Apply an SVD on the only non-orthogonal core of the tensor train, reducing it's rank and orthogonalising it
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TT Rounding

SVD( )
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Apply an SVD on the only non-orthogonal core of the tensor train, reducing it's rank and orthogonalising it
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Apply an SVD on the only non-orthogonal core of the tensor train, reducing it's rank and orthogonalising it
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Apply an SVD on the only non-orthogonal core of the tensor train, reducing it's rank and orthogonalising it
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The result is a rank-optimal tensor-train
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Definitions
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Tasks are interdependent and form a task graph. The graph is then scheduled by the runtime
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Distributed tiled tensor-train rounding
Problem definition

• Current state-of-the-art only works well on tensor-trains with a 1D 
distribution of tiles  

• Best case for 1D distribution is small ranks and large external dimensions, 
which may not be the case when rounding is done 

• Objective to perform the rounding operation on tiled tensor-trains with a 
3D block-cyclic (3DBC) distribution 

• Problem of 3D distribution is that when matricized we do not get a nice 2D 
block-cyclic (2DBC) distribution 

• Implementation in Celeste with StarPU and Chameleon
[1] Hussam Al Daas, Grey Ballard, and Peter Benner, “Parallel Algorithms for Tensor Train Arithmetic”, SIAM J. Sci. Comput., 2022

[1]



Distributed tiled tensor-train rounding
Orthogonalization steps with HQR

• Matricize a factor     of the tensor train vertically 

• Transform 3DBC into 2DBC by a permutation of rows 

• Compute QR using Chameleon hierarchical QR (HQR) 

• Update the following factor with a high priority 

• Update the current factor with a lower priority 

• In our case the permutation is implicitly obtained by having two co-
existing aliases of the same matrix

Ud

PUd = QR ⟹ Ud = P−1QR

P

Ud+1 ← RUd+1

Ud ← P−1Q



Distributed tiled tensor-train rounding
Rounding steps with randSVD

• Matricize a factor      of the tensor train horizontally 

• Compute random projection  

• Compute QR using Chameleon hierarchical QR (HQR) 

• Extract  

• Update the next factor 

• Replace current factor 

Ud

PUdΩ = QR ⟹ UdΩ = P−1QR

B = P−1QTUd

UdΩ

Ud−1 ← BUd−1

Ud ← P−1Q



Distributed Tensor

CelesteCeleste
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Distributed tensors



Distributed Tensor

• Implemented basic arithmetic (addition, element-wise multiplication, etc) as task-based and distributed (MPI) 
• Uses distributed Tiles for tiling 
• Uses a Distribution specified when constructed to know how to distribute tiles, by default nD block-cyclic 
• Uses a Container for tiles specified upon construction, by default a container implemented with a hash-map on 

multi-linear tile indices to keep knowledge of only some tiles in memory

P2
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P4

P4

P6

P4

P4

P7

P5

P5

P2

P0

P0

P2

P0

P0

P3

P1

P1

Celeste::Dist::Dense::Tensor<DataType> A(dimSize, tileSize); 
Celeste::Dist::Dense::Tensor<DataType> B(dimSize, tileSize); 
Celeste::Dist::Dense::Tensor<DataType> C(dimSize, tileSize); 
Celeste::Dist::Dense::Tensor<DataType> D(dimSize, tileSize); 
Celeste::Dist::Dense::Tensor<DataType> ans(dimSize, tileSize); 
starpu_task_wait_for_all(); 
std::vector<size_t> perm{2, 1, 0}; 
A.perm(perm); 
starpu_task_wait_for_all(); 
auto fl = 3.0; 
auto res = A + B - fl * (C + D);

Celeste
Distributed tensors



Distributed Tensor
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Celeste::Dist::Dense::Tensor<DataType> A(dimSize, tileSize); 
Celeste::Dist::Dense::Tensor<DataType> B(dimSize, tileSize); 
Celeste::Dist::Dense::Tensor<DataType> C(dimSize, tileSize); 
Celeste::Dist::Dense::Tensor<DataType> D(dimSize, tileSize); 
Celeste::Dist::Dense::Tensor<DataType> ans(dimSize, tileSize); 
starpu_task_wait_for_all(); 
std::vector<size_t> perm{2, 1, 0}; 
A.perm(perm); 
starpu_task_wait_for_all(); 
auto fl = 3.0; 
auto res = A + B - fl * (C + D);

• Implemented basic arithmetic (addition, element-wise multiplication, etc) as task-based and distributed (MPI) 
• Uses distributed Tiles for tiling 
• Uses a Distribution specified when constructed to know how to distribute tiles, by default nD block-cyclic 
• Uses a Container for tiles specified upon construction, by default a container implemented with a hash-map on 

multi-linear tile indices to keep knowledge of only some tiles in memory

Celeste
Distributed tensors



Distributed Tensor
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Celeste::Dist::Dense::Tensor<DataType> A(dimSize, tileSize); 
Celeste::Dist::Dense::Tensor<DataType> B(dimSize, tileSize); 
Celeste::Dist::Dense::Tensor<DataType> C(dimSize, tileSize); 
Celeste::Dist::Dense::Tensor<DataType> D(dimSize, tileSize); 
Celeste::Dist::Dense::Tensor<DataType> ans(dimSize, tileSize); 
starpu_task_wait_for_all(); 
std::vector<size_t> perm{2, 1, 0}; 
A.perm(perm); 
starpu_task_wait_for_all(); 
auto fl = 3.0; 
auto res = A + B - fl * (C + D);

• Support partitioning, for now only 3D tiled tensors into 2D tiles 
• Requires splitting of the tensor tiles along one of its dimensions 
• The splitting generates Partition objects which contain the data handles to be given to a Matrix type object 

(connection is not yet done)

Celeste
Distributed tensors
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Chameleon 
(Compose)
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(Compose)

Celeste



Chameleon 
(Compose)

• Small abstraction layer on top of Chameleon 
• Descriptors are managed by a separate class for better 

memory management (automatic descriptor destruction) 
• 2 types of descriptors, owning descriptors that manage 

data and non-owning descriptors that are aliases of other 
descriptors or concatenations 

• Descriptors have a set distribution (lifetime is tied by 
ownership) 

• Non-owning descriptors need to transform indices from 
their distribution to the underlying distribution 

• Modified Chameleon to support aliasing well, to share data 
handles and other between multiple descriptors

Chameleon integration into Celeste
Celeste



Chameleon 
(Compose)

Interface

Task
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TensorKernels CPU

Kernels CUDA GPUTensor
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cuTENSORStarPU

Distributed Matrix

Chameleon integration into Celeste

Chameleon 
(Compose)

Celeste
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(Compose)
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Distributed MatrixDistributed Matrix

Celeste



Distributed Matrix

• Matrix class implemented on top of descriptor abstraction 
• This class contains all operations that can be performed on 

distributed matrices (GEMM, QR, HQR, random, fill, etc) 
• Serves to separate memory management (Descriptor 

classes) and operations (Matrix class) cleanly 
• Used as top-level class to implement randSVD for 

truncation 
• We use aliases to have 3D block-cyclic horizontal and 

vertical representations of our matricized tensor-train 
cores, as well as a 2D block-cyclic permuted alias of the 
vertical matricization

Celeste
TT-rounding by execution with matrices



Distributed Matrix

TT-rounding by execution with matrices
Celeste



TT-rounding by execution with matrices
Celeste
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TT-rounding by execution with matrices

Distributed Matrix

Celeste



Efficient contraction ordering strategies for 
tensor-train scalar product



Efficient contraction ordering strategies for TT scalar product

• Exploration of quasi-optimal contraction strategies for Tensor-Train scalar product 

• NP-hard problem in general contraction network 

• For general tensor networks, state-of-the-art methods use greedy edge-sorting 
algorithms, recursive network partitioning, or transforming the network into a tree of 
contractions 

• We developed two near-optimal polynomial time algorithms 

• Paper submitted to IPDPS 2025

Problem definition



Sweeping algorithm

• Solve the problem for windows that consider 
all possible orderings for three contractions 

• Each window generates subproblems to be 
solved 

• One contraction weight gets carried over as 
a multiplicative factor to the next window for 
each subproblem 

• The best cost overall is determined by the 
last window

Efficient contraction ordering strategies for TT scalar product

Each window generates multiple subproblems with a 
multiplicative factor



-optimal algorithmΔ

• Divide the tensor network into all possible rectangular 
windows 

• Use the optimal solver to find solutions for all windows 
smaller than  

• Combine windows larger than  using dynamic 
programming 

• Each window of size s >  is a sequence of windows 
smaller than , thus only the splits into t + u = s such 
that t <  or u <  need to be considered

Δ

Δ

Δ
Δ

Δ Δ
Solve optimally windows smaller than  and 

combine them into larger solutions
Δ

Efficient contraction ordering strategies for TT scalar product



xTy xTyQuantized Random

Efficient contraction ordering strategies for TT scalar product
Results



xT Ay xT AyQuantized Random

Efficient contraction ordering strategies for TT scalar product
Results


