
Fine grain energy
measurement
Exasoft General Assembly
Jules RISSE
November 8, 2024

Supervisors: François TRAHAY, Amina
GUERMOUCHE



Table of contents

Introduction

Measuring energy in StarPU

Solving the linear systems

Validation

Results visualization

Conclusion

1/28 1



Introduction



Why does energy matter ?

Frontier, the fastest
supercomputer in the world:

• 22,7 MW
• 40 000 french households
• 30M USD electricity bill

3% diminution = 1M USD
savings

3/28 3



How do we use these architectures ?

Problem: Efficient use of
heterogeneous multicore
architectures is hard.

• Accelerator implementations
(CUDA, HIP, FPGA);

• scheduling and data transfers;
• internode communications.

Solution: task based runtime
systems

Figure 1: topology of a multicore system
with accelerators

4/28 4



The StarPU runtime system

Task based runtime system for
heterogeneous hardware.

• View HPC programm as a
directed acyclic graph (DAG)
of tasks;

• tasks can have multiple
implementations (CPU,
CUDA, FPGA);

• StarPU handles data transfers,
scheduling and efficient task
executions. Figure 2: DAG of a 5x5 matrix Cholesky

decomposition

5/28 5



Scheduling and performance models

Scheduling policies can use a history based performance model.

• Tasks time are
measured during
execution;

• they can then be
distributed on
the fastest
processing unit.

6/28 6



Adding energy to the performance model

We quickly run into a granularity issue :
• Tasks execution time: < 1 ms
• Power meter granularity: 1 to 10’s of ms

Figure 3: Issues raised by a naïve energy measuring approach

7/28 7



Proposed solution

We regularly measure energy and trace tasks during the StarPU
program execution, then create an overdetermined linear system.

Figure 4: Basic equations linking energy and tasks

8/28 8



Measuring energy in StarPU



Querying energy counters

Contribution : energy-reader, a lightweight C library and API for
querying energy values without elevated privileges.

Type Method Granularity Scope Cost
CPU Running Average

Power Limits
(RAPL)

1 ms Socket,
Cores,
RAM,
IGPU

in µs

Nvidia
GPU

Nvidia
Management
Library (NVML)

10 - 45 ms All
the
GPU

in ms

AMD
GPU

ROCm System
Management
Interface (ROCM-
SMI)

x All
the
GPU

x

PAPI can also be used with elevated privileges.

10/28 10



Adding energy measurements to StarPU

Using the existing probing mechanism (FxT) tracing tasks executions.
Addition of regular energy probes (RAPL: 25ms, NVML: 100ms).

Figure 5: tasks execution and energy measurement probing with FxT

11/28 11



Solving the linear systems



Power system generation

Figure 6: Linear system generation

7ts 2ts 3ts
3ts 4ts 5ts
3ts 6ts 3ts

Pa
Pb
Pc


=

E1 − E0

E2 − E1

E3 − E2


(1)

13/28 13



Solving methods

With an overdetermined system Ax = b, the Ordinary Least
Square (OLS) problem is the following :

min
x

∥Ax − b∥,

the solution of which can be written with the normal equations:

x = (ATA)−1ATb.

We use 2 methods :
• StatsModels OLS regression class
• Scipy Linear Least Square method

14/28 14



Validation



Test program

The test program is a general matrix solver which makes use of a
variety of dense linear algebra operations:

• dgemm (matrix multiplication)
• dsyrk (symmetric rank-k update)
• dtrsm (triangular matrix solver)
• dpotrf (Cholesky factorization)

We use the chameleon library for efficient kernel implementations.

16/28 16



Testing environment

We use the grid5000 testbed to try various hardware
configurations:

cluster CPU GPU Memory
neowise 1 x AMD

EPYC 7642
8 x AMD
MI50 (32
GiB)

512 GiB

chifflot 2 x Intel
Xeon Gold
6126

2 x Nvidia
Tesla V100
(32 GiB)

192 GiB

sirius 2 x AMD
EPYC 7742

8 x Nvidia
A100 (40
GiB)

1.0 TiB

17/28 17



Result verifications

chameleon_dtesting allows batch execution of certain operations.
Overall average power consumption is close that operation’s
consumption.-

Figure 7: Trace generated by batch testing the dgemm operation on 1 CPU.

18/28 18



Preliminary results

CPU power consumption for dgemm, dsyrk, dtrsm on AMD EPYC
7642 (10 executions):

-

19/28 19



Results visualization



Saving the results

Every analyzed program execution is saved to a database and
results can be viewed in a web application.

Figure 8: web application dashboard

21/28 21



Visualizing the system

• Fully interactive;
• Each bar is a measurement interval.

Figure 9: cumulated tasks time pie chart (top) and tasks durations barchart (bottom)

22/28 22



Visualizing predicted and actual tasks energy

We can also select the solver used for prediction.

Figure 10: energy consumption barchart

23/28 23



Visualizing validation metrics for the prediction

Figure 11: quartile-quartile plot Figure 12: kernel density estimate plot

24/28 24



Comparing a solution with subsequent program runs

Figure 13: comparator interface

25/28 25



Conclusion



Conclusion

• Promising results for most used tasks, but solution is not stable
nor accurate for less used ones;

• need to try more use cases / hardware + tweaking parameters;
• for Nvidia GPU, high NVML overhead disturbs computations;
• on CPU, tasks tend to have the same power consumption.

27/28 27



Future works

Possible improvements:

• group similar tasks/states in the linear system;
• add RAM power costs;
• use external powermetters (grid5000)
• add more relevant data (p-state, c-state, temperatures);
• explore low consumption core setups.

-> Thesis continuation.

28/28 28



Appendix - RAPL domains

Figure 14: RAPL domains

1/4 1



Appendix - NVML latency

Figure 15: NVML latency boxplot - no extreme values

2/4 2



Appendix - NVML latency 2

Figure 16: NVML latency boxplot - with extreme values

3/4 3



Appendix - Model applicability

Figure 17: heatmap of mean absolute percentage error using the solution from a
program run analysis on subsequent program executions.

4/4 4


	Introduction
	Measuring energy in StarPU
	Solving the linear systems
	Validation
	Results visualization
	Conclusion
	Appendix

