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Introduction&Context



Context

My PhD

Working at Francois Trahay and Valentin Honoré
And also people from INRIA Bordeaux !

PEPR NumPEx (that’s us !)

• Creating the software stack for exascale computers
• Alice Recoque (2025): Heterogenous architectures

◦ 10k+ CPU Nodes
◦ 10k+ GPUs

• Various paradigms: MPI, CUDA, StarPU
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Context

Scalability issues

• Load-balancing
• Concurrent access to resources
• Interactions between threads
• Non-negligeable communication times
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To scale/debug/optimize these apps, we need performance analysis tools !
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Traces & tracing tools

Traces

• Timeline of an execution
• Stores events with data

◦ Timestamps
◦ Arguments
◦ Callstack
◦ …

Tracing tools

Intercept known function calls (MPI, OMP,
CUDA) and log them to create a trace Figure 1: An OTF2 Trace visualised with Vampir.

Issue: traces quickly become huge (hard to store and analyse)
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Types of traces

Sequential

Array of events in chronological order
• Straightforward to read & write
• Redundancy → heavy traces

Structural
HPC apps are predictable → include the
structure of the program

• Better compression
• More information
• Easier analysis

timestamp0A timestamp2B timestampA4 timestamp0A

0A 2B A4 0A 0A 2B A4 0A

Z²

0A timestamp timestamp timestamp
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What do we need ?

We need a new, more scalable trace format, with:
• low overhead (unobtrusive)
• structure detection
• scalable analysis
• efficient compression

i.e an analysis-focused highly compressible trace format
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Pallas



Pallas

Trace format

• Structural, generic trace format
• Automatic sequence detection
• Provides reading/writing API via C/C++ library
• Provides an OTF2 writing API (compatible with

many tools)

EZTrace

• Intercepts MPI/OMP/CUDA calls
• Builds OTF2 traces via OTF2 library
• With our API, creates Pallas traces
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Example: EZTrace

EZTrace
Intercepted MPI function:

• Enter and Leave events = scope
• Punctual event = message sent

int main() {
DO_FOR(200) {

MPI_Send(...);
MPI_Recv(...);

}
}

Enter

Thread

Leave

Thread199x

Enter

MPI_Send

MPI_Send

Leave

MPI_Send

Enter

MPI_Recv

MPI_Recv

Leave

MPI_Recv
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Structure detection

OTF2 to Pallas

• Events are stored as generic tokens
• Enter/Leave events are converted to

Sequences (makes shorter arrays)
• Sequences and Loops are also generic

tokens.

Structure detection
Add a token → Loop detection algorithm
Repetition is detected:

• Check already existing Sequences with
hashing function

• Replace repeating Tokens with new Loops
token

E0 S1 S2
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Structure detection

OTF2 to Pallas

• Events are stored as generic tokens
• Enter/Leave events are converted to

Sequences (makes shorter arrays)
• Sequences and Loops are also generic

tokens.

Structure detection
Add a token → Loop detection algorithm
Repetition is detected:

• Check already existing Sequences with
hashing function

• Replace repeating Tokens with new Loops
token

E0 S1 S2 S1 S2
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Structure detection

OTF2 to Pallas

• Events are stored as generic tokens
• Enter/Leave events are converted to

Sequences (makes shorter arrays)
• Sequences and Loops are also generic

tokens.

Structure detection
Add a token → Loop detection algorithm
Repetition is detected:

• Check already existing Sequences with
hashing function

• Replace repeating Tokens with new Loops
token

E0 L0 = 2 * S3

S1 S2
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Structure detection

OTF2 to Pallas

• Events are stored as generic tokens
• Enter/Leave events are converted to

Sequences (makes shorter arrays)
• Sequences and Loops are also generic

tokens.

Structure detection
Add a token → Loop detection algorithm
Repetition is detected:

• Check already existing Sequences with
hashing function

• Replace repeating Tokens with new Loops
token

E0 L0 = 2 * S3

S1 S2

S1 S2
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Structure detection

OTF2 to Pallas

• Events are stored as generic tokens
• Enter/Leave events are converted to

Sequences (makes shorter arrays)
• Sequences and Loops are also generic

tokens.

Structure detection
Add a token → Loop detection algorithm
Repetition is detected:

• Check already existing Sequences with
hashing function

• Replace repeating Tokens with new Loops
token

E0 E7L0 = 200 * S3

S1 S2
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Trace format

Parallel Write/Read

• One folder per process
• No concurrent writing
• Easy parallel reading

Smart data storage & retrieval

• Structure, statistics & metadata are
independent of data

◦ On-demand accessibility
• Durations are grouped by tokens

◦ Decent compression
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Benchmarks andEvaluations



Experimental parameters

• NAS Parallel Benchmarks, AMG, MiniFE, Lulesh & Quicksilver

• Every experiment was run on Jean-Zay

• Tested with
◦ OTF2 using EZTrace
◦ Pallas using EZTrace and OTF2 API
◦ Pilgrim (trace format & event interception)

• Almost all experiences on 4096 MPI processes.
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Overhead

Key points

• Lower is better !
• OTF2 < Pallas < Pilgrim
• Low overhead for Pallas
• Pilgrim struggles with

event variety

Figure 2: Execution time of the different tracing scenario, normalized by
the vanilla run of the application, for the different applications over 4096
MPI processes.
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Trace size & compression

Key points

• Lower is better∗ !
• Pilgrim < Pallas < OTF2
• OTF2 ≈ 10 · Pilgrim
• Pilgrim collects less

information than EZTrace
• Pigrim compresses all the

timestamps together.

Figure 3: Comparison of trace size for different trace formats, when
tracing the different applications over 4096 MPI processes.
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Analysis speed: Communication Matrix

Key points

• Pilgrim/Pallas ≪ OTF2
• Pilgrim/Pallas → scalable
• Not pictured: Kripke

OTF2 analysis was 450s
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Analysis speed: Communication Matrix

Key points

• Pallas ≈ Pilgrim
• Analysis speed

uncorrelated with actual
trace size.

• Pallas reads only the
header.
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Conclusion



Conclusion

Pallas:
3 Low Overhead

+ That scales well
3 Structure detection
3 Efficient timestamp storage with compression / encoding
5 Efficient compression
3 Basic scalable & performant analysis
3 On demand-trace loading and exploration
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Future developments

• Evaluating Pallas tracing on non-MPI kernels
• Evaluating Pallas at larger scales (currently testing 4k threads)
• Inter-trace compression → ”Vertical” scalability
• Testing more efficient compression techniques
• More complex and scalable analysis
• Automatic event filtering

20



Appendix
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Timestamp compression & encoding

Durations are similar → easily compressible
Different storage options:

• No timestamps (Structure only)
• Encoding:

◦ Removed leading 0s
◦ Replace leading 0s (as presented before)

• Compression:
◦ ZSTD
◦ SZ
◦ ZFP
◦ Bin-based (similar to QSDG)
◦ Histogram-based (same thing but Gaussian

distribution)

 Lossy compression
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(Pilgrim) Inter-trace compression
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Using ncurses
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