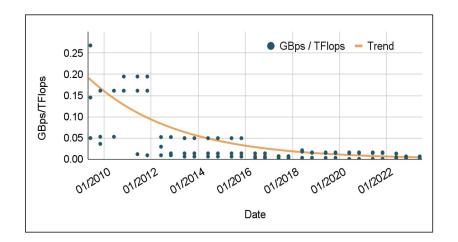


Liberté Égalité Fraternité

ExaDoST - Work Package 1 Exascale I/O and Data Storage

WP Leaders: Francieli Boito (Université de Bordeaux) & François Tessier (Inria Rennes)


1. Challenges

Trends **ff** -----*A supercomputer is a device for turning compute-bound problems into I/O-bounds problems."

- Ensemble forecast (ECMWF)
 - 60TB generated per hour
 - Projection : +40% per year
- LHC data archives (CERN)
 - 250PB of accumulated data
 - In 2030 : **4300PB (x17)**
- Q Continuum cosmological simulation (DOE)
 - 2PB per simulation campaign

WP Objectives

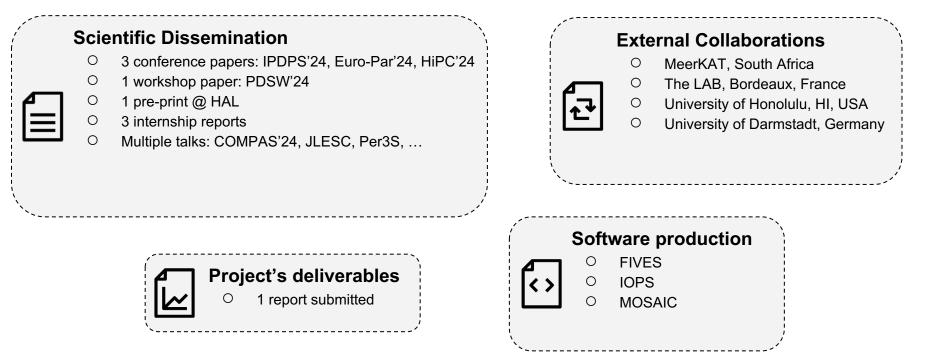
Optimize the I/O performance of applications and workflows, and leverage emerging storage technologies

- **Support the I/O and storage requirements** of complex simulation/analytics/AI workflows running on hybrid HPC (+cloud, +edge) systems
- Promote efficient I/O resource usage
- Make the I/O infrastructure adaptable to applications' characteristics
- Scale up modern I/O and data storage methods and tools
- Develop and integrate **new output formats** for checkpoint/restart and for scientific analysis

Participants

- Inria Bordeaux
 - o Researchers: Francieli Boito, Luan Teylo, Emmanuel Jeannot, Brice Goglin
 - Engineers: Mahamat Abdraman
 - PhD Students: Alexis Bandet
 - Interns: <u>Iheb Becher</u>
 - <+ open positions: 1 PhD Student, 1 Post-doc>
- Inria Rennes
 - o Researchers: François Tessier, Gabriel Antoniu, Guillaume Pallez, Silvina Caino-Lores, Jakob Luettgau
 - Engineers: Julien Monniot (to start in Jan. 2025)
 - PhD Students: Julien Monniot, Théo Jolivel (+ CEA)
 - Interns: Ugo Thay
- Maison de la Simulation
 - Researchers: Julien Bigot, Yushan Wang, <+ open position>
- CEA
 - o Researchers: Philippe Deniel, Thomas Leibovici, Arnaud Durocher, Maxime Delorme
- DDN
 - Researchers: Jean-Thomas Acquaviva
 - PhD Students: Méline Trochon (+ Inria Bordeaux, + Inria Rennes)

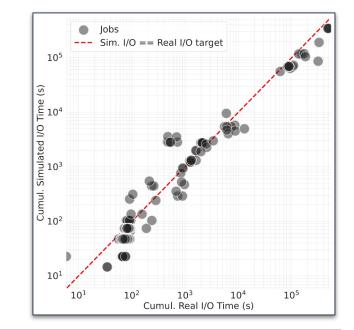
2. Scientific Contributions


Summary

I/O performance data @ Zenodo

1 I/O traces repository

Focus 1: Simulation of Large-Scale HPC Storage Systems


FIVES

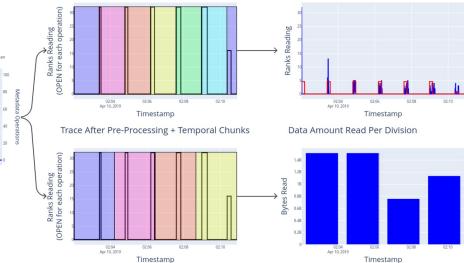
FIVES is a WRENCH-based Simulator of Scheduling on Storage Systems at Scale (5S)

- Based on WRENCH/SimGrid (time-based DES)
- Batch scheduler implementation
- New built-in distributed storage service

FIVES can:

- Replay aggregated Darshan I/O traces...
- ... on a modeled supercomputer...
- ... including its parallel file-system...
- ... and provides the user with **accurate results**...
- ... thanks to a **bayesian optimization calibration**.

Focus 2: Detection and Categorization of I/O Patterns in HPC Applications


MOSAIC

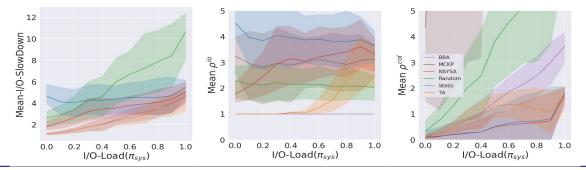
- Segmentation-based method for detecting I/O patterns, including periodic behavior, from Darshan I/O traces
- Analysis of one year of ۰ Blue from the traces Waters supercomputer

Base Trace iobubble_bgrch1p3_off_id9807799_4-9-68521-5326334451444447589_1.darshan Reading 02:04 Apr 10, 2019 02-08 Timestamp 02:04 Apr 10, 2019 Timestamp Legend: Read Operations from Darshan Trace — Metadata Requests from Darshan Trace Operations after Pre-Processing

Trace After Pre-Processing + Segmentation

Periodicity Detection Result

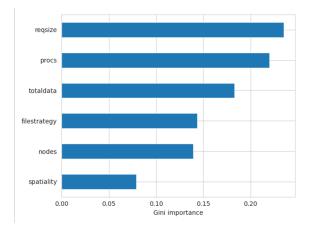
ExaDoST-funded internship and thesis (Oct. 2024)


- Periodicity Detection Result

Focus 3: Scheduling Distributed I/O Resources in HPC

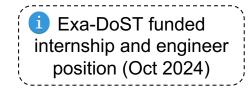
- Proposed algorithms for **allocation** and **placement** of I/O resources (OSTs, I/O nodes, etc)
- Using different application information as input
- Placement: balancing the number of applications per resource is up to 50% better than random placement
 - more sophisticated placement is **not** necessary
- Allocation: BBA and TA algorithms up to 4 times better than an allocation based on the number of compute resources
 - **BBA** requires the number of I/O resources that maximizes application performance

17/07/2024 Alexis Bandet, Francieli Boito, Guillaume Pallez. Scheduling distributed I/O resources in HPC systems. Euro-Par 2024, Madrid, Spain.

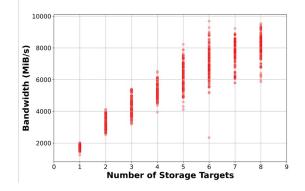


Focus 4: Prediction of HPC I/O Resources Usage

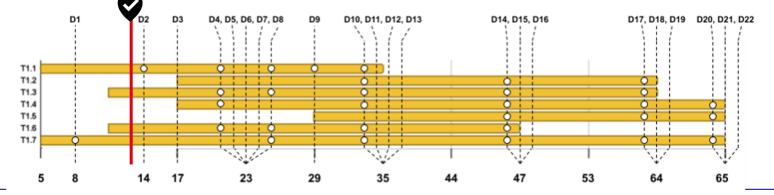
- How can we obtain the input for the BBA allocation algorithm?
- We defined the "**best prediction**", taking performance variability into account
 - up to ~25% better than BBA!
- Machine learning models to predict it from general application characteristics
 - we can get ~80% accuracy without amount of data and spatiality (harder to obtain)
- Data set available at Zenodo:


https://doi.org/10.5281/zenodo.10518127

Focus 5: I/O Performance Profiling


- **Profile parallel file system performance** by evaluating combinations of parameters: compute nodes, processes, stripe count, and size.
- IOPS, an open-source tool, automates parameter search
 - Designed for ease of use and to minimize the number of tests
 - Provides a **report about the results**

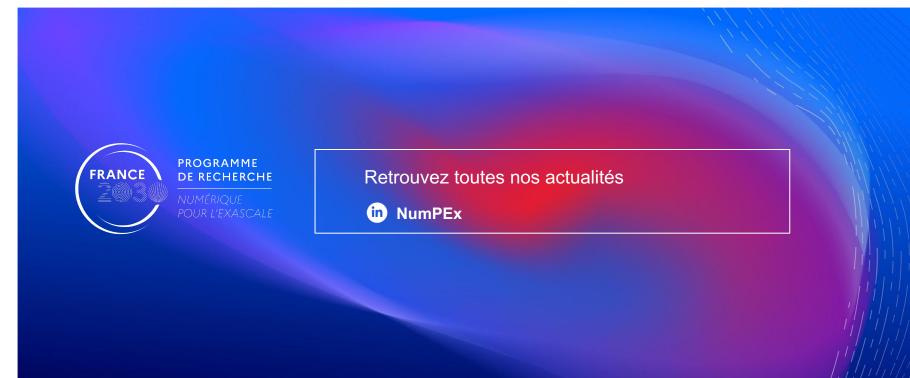
https://gitlab.inria.fr/lgouveia/iops



Deliverables

- MdlS, R] (M0+08) WP1,2,3,4: Selection of the initial release of the libraries and tools that will make up the Exa-DoST software stack.
- [TADAAM, R] (M0+23) WP1: Report on the solutions selected in Exa-DoST to answer the storage and IO challenges at Exascale
- [KerData, C] (M0+23) WP1,2,3: Intermediate coordinated release of all tools and libraries produced by Exa-DoST, including documentation
- [MdlS, C] (M0+35) WP1,2,3: Intermediate coordinated release of all tools and libraries produced by Exa-DoST, including documentation
- [SANL, C] (M0+47) WP1,2,3: Intermediate coordinated release of all tools and libraries produced by Exa-DoST, including documentation
- [DataMove, C] (M0+59) WP1,2,3: Final releases of all tools and libraries produced by Exa-DoST, including documentation
- [DataMove, R] (M0+65) WP1,2,3: Report on the final design of the tools and libraries produced by Exa-DoST and design solved

3. Perspectives & Challenges


Perspectives & Challenges

- TADaaM + KerData currently working on trace analysis
 - to characterize the temporal I/O behavior of HPC applications
 - extract common patterns
- Need to work on the illustrators
 - two internships on SKA (TADaaM+LAB, KerData)
 - more details during the WP1 session tomorrow morning
 - start of Méline Trochon's thesis soon, after an internship on Gysela
 - one of the tasks for the new recruited engineer @ TADaaM
 - a big goal of this meeting!

