
Disposition : Titre image

MANTA – the CEA’s future
platform for simulations in
structural mechanics and
their interactions

Disposition : Titre de section Gris

2

Context
&
Objectives1

Disposition : Titre et contenu

3

Legacy softwares

■ Lot of functionalities

■ Address today industrial problems

■ Mature and robust

■ Technical debt
■ Difficult to evolve and maintain

■ Computational performances limited
■ No more extensible

Numerical simulation of the mechanics of structures and their

interactions for civil nuclear applications, under nominal (Cast3m)

and accidental (EPX) conditions

Disposition : Titre et contenu

Main objectives

4

■ Explicit dynamics for structures and

compressible fluids

■ Fluid / structure interactions

■ Industrial applications

■ Finite-elements, finite-volumes, sph,

discrete element method

■ ~40 years of development

■ Generic tool for “implicit problems”

■ Mainly geared for (non-linear)

mechanics

■ … but also applied to incompressible

fluids, electromagnetism, metallurgy, …

■ Industrial applications

■ Finite-elements

■ ~40 years of development

■ Next gen., HPC oriented

■ Structure / compressible fluids / … ,

interactions

■ Industrial applications

■ Every mesh-based method (FE, FV,

HDG, …)

■ C++

■ “automatic parallelism”

■ Easy to maintain and evolve on the

long term

■ Open-source

2030: industrial
operation

Disposition : Titre et contenu

Software engineering objectives

5

■ Target industrial applications

■ Multi PDE

■ Lagrangian, Eulerian, ALE approaches

■ Multi “areas” (more general than “multi-material”: may overlap, not cover the whole mesh, …)

■ Multi topological dimension (Volume, shell, beam elements in a single calculation)

■ Various geometrical supports (tetrahedral, hexahedra, prims, pyramids, quadrangles, triangles,

segments)

■ Very high “flexibility”, which may affect performances

■ Implicit & explicit problems

■ HPC

■ Native distributed parallelism

■ Total distribution of the data, workload

• No specificity of the process 0

• No array of size O(global numerical model size)

■ Performance portability: ability to adapt to various hardware architectures (GPU, ARM, …)

■ “Automatic parallelism”

■ Feedback from EPX: strong requirement. the code features must be able to be extended and maintained

by developers knowing almost nothing about parallelism

■ Code new functionality “as in a sequential code”, and works in //

Disposition : Titre et contenu

Users and APIs

6

C++ “expert” API

Numerical method Layer

Core Layer

Python user API

Plugins C++

JSON data file

C++ “user” API

■ Different kind of users

■ An API suited to each

• High level of
control and
flexibiliy

• High stability
of the API

• Less risk of
doing
mistakes

Disposition : Titre de section Gris

7

Design constraints
for HPC2

Disposition : Titre et contenu

Layers

8

End user Layer

Core Layer

Generic pipeline Services
Fields

Mesh

IOs

Linear
Systems

…
Distributed
memory //

Shared
memory //

Numerical
methods Layer

Formulations

Finite
elements

Implicit features

Explicit features

Spatial
integration

Distributed linear
solver:

PETSc/Trilinos/Alien

Distributed mesh
backend:

Moab/pumi/LibMesh
MPI

Kokkos/SYCL
/ openMP

Castem /
gmsh / VTK /

MED / PDI

Thirdparty with
localized interface

MFrontDeformable structures

Compressible fluids

Thermal conduction

…

Finite
volumes

…

Disposition : Titre et contenu

Genericity: the “pipeline”

9

■ Purpose

■ Assemble distributed linear systems resulting from spatial integration on unstructured meshes

■ Attach “constraints” to linear systems

■ Solve the (saddle point problems) linear systems

■ Support all the parallelism

■ Assembling: spatial integration over (possibly non-conforming) unstructured meshes

■ Split global integral over mesh entities:

■ Use finite-element mapping with reference element to integrate using standard quadrature formulae:

■ Programming of actual problems through entry points:

• Integrand::addOn →

• Assembler::assemble →

■ Adverse impact on sequential and // performances

■ No predetermined algorithmic motif, very few assumptions in the generic pipeline about what the terminal code will do.

■ Multi-zone, multi-PDEs: lots of indirections, complex memory layout

■ Unstructured meshes

𝐴 𝐶0𝑡 𝐶1𝑡 ⋯
𝐶0 0 0 ⋯
𝐶1 0 0 ⋯
⋮ ⋮ ⋮ ⋱

X
λ0
𝜆1
⋮

=

𝐵
𝐷0
𝐷1
⋮

Disposition : Titre et contenu

“Automatic parallelism”

10

■ “Automatic” parallelism: code terminal problems as in sequential

■ Generic pipeline: implement everything through the entry points & core tools

■ Ghosting

• Each process can replicate any mesh cell owned by another process → ghost cell

• When imported, a ghost entity carries all the data it is related to (e.g. MeshSet belongings), and recursively for its lower dimensional

entities (may induce an excess of communication volume)

• A ghost entity (as a local one) should be the same as in sequential

• Functions to synchronize field values on ghost entities

■ Adverse impact on sequential and // performances

■ No specific tailored optimization for each problem

■ Over-abundance of data transferred when importing cells as ghosts

A few illustrations

11

Disposition : Titre et contenu

Some tools

12AG SEMT, 2023-06-27

Collaborative workflow

Languages & compilers

HPC benchmark

Disposition : Titre de section Gris

13

Roadmap & some
directions for HPC3

Disposition : Titre et contenu

Geometrical intersections detection with distributed
parallelism

14AG SEMT, 2023-06-27

■ XXX

■ YYY

■ Antoine Motte’s PhD Thesis

Disposition : Titre et contenu

Dynamic load balancing: application to contact
mechanics

15

■ Several “stages” in the computation of a time step

■ Assembling of the “mass”/“stiffness”/”forces”

■ Detection of the contacts

■ Assembling of the contact constraints

■ Solving of the saddle point problem

■ “Best partition” different for each stage

■ “Compromise” to find

■ Optimization throughout all the stages

■ Contact zones may evolve a lot during computation

 “dynamic” load balancing

■ Optimal frequency?

■ Compromise between the cost of the rebalancing, and

the cost of unbalanced calculations

■ Interaction with other approaches causing dynamic

load balancing issues: AMR ?

AG SEMT, 2023-06-27

■ Best if no contact
■ Minimal and balanced

communications

■ Balanced workloads

■ Minimizes communications due

to contact

■ But unbalanced workload

■ Balanced workload and

communications

■ But excess of communications

with respect to optimal case

Disposition : Titre et contenu

Saddle point problem resolution with iterative
solvers for distributed implicit problems

16

■ Open research subject

■ A and C very sparse

■ C/D enforce complex boundary conditions (such as contact

between structures)

■ Different context than the “classical” Stokes-problem

■ 𝑠𝑖𝑧𝑒 𝜆 ≪ 𝑠𝑖𝑧𝑒 𝑋

■ Matrix free?

■ PhD thesis project in collaboration with Sorbonne University

starting in 2024

AG SEMT, 2023-06-27

Disposition : Titre et contenu

Non conforming Adaptive Mesh refinement

17

■ A priori cell-based

■ Forest of structured trees: possibility of specific optimization for structured meshes while keeping the entry points

implementations

■ Strong impact on load balancing (dynamic)

■ Lot of questions:

■ Optimal frequency of the refinement/coarsening  optimal frequency of the load balancing ?

■ Which numerical methods (conforming, non-conforming) ?

■ Which preconditioners ?

■ …

Disposition : Titre et contenu

Performance portability

18

■ At this time

■ MPI only: decomposition of the global mesh into subdomains: each MPI process works out and stores only its

subdomain (1 subdomain per MPI process)

• “Almost (ghosts) Total” distribution of data

■ Vectorization: delegated to Eigen

■ Directions for performance portability

■ Hybrid MPI+CPU-threads is not a goal in itself

■ No architecture specific developments

■ Delegation of the performance portability to a programing-model/library/middleware/…

■ First prototype with Kokkos in construction

Disposition : Titre et contenu

Code generation

19

■ Compromise

■ Performance

■ Code readability and accessibility

■ Factorization of the code

■ Use automatic code generation to win on all fronts

■ Non-c++/parallel-ninja implement “master code” through a DSL

■ Code generator outputs non-factorized and unintelligible but efficient “slave code” implementing MANTA’s pipeline

entry points

■ Maintenance occurs only on “master code” (and code generator)

■ Automatic differentiation to generate code for Jacobian matrices

■ Thesis starting in 2024 to work on that

Disposition : FIN Gris

Thanks for your attention
Some questions?

