MANTA - the CEA’s future

platform for simulations in
structural mechanics and

their interactions
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Legacy softwares

m Lot of functionalities
= Address today industrial problems
Mature and robust

Ben quoi, ¢a
marche non ?

m Technical debt
m Difficult to evolve and maintain

s Computational performances limited
s NO more extensible

Numerical simulation of the mechanics of structures and their
interactions for civil nuclear applications, under nominal (Cast3m i)
and accidental (EPX 28 ) conditions
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Main objectives

2030: industrial
operation




Software engineering objectives

m Target industrial applications
= Multi PDE
m Lagrangian, Eulerian, ALE approaches
m  Multi “areas” (more general than “multi-material”: may overlap, not cover the whole mesh, ...)
m Multi topological dimension (Volume, shell, beam elements in a single calculation)
m Various geometrical supports (tetrahedral, hexahedra, prims, pyramids, quadrangles, triangles,
segments)
m Very high “flexibility”, which may affect performances
m Implicit & explicit problems
s HPC
m Native distributed parallelism

m Total distribution of the data, workload
* No specificity of the process 0
* No array of size O(global numerical model size)

m Performance portability: ability to adapt to various hardware architectures (GPU, ARM, ...)
m “Automatic parallelism”
m Feedback from EPX: strong requirement. the code features must be able to be extended and maintained
by developers knowing almost nothing about parallelism
m Code new functionality “as in a sequential code”, and works in //

Of course | can
code in parallel:
look, | use both of my
hands on the
keyboard!
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Users and APIls

m Different kind of users

m An API suited to each ﬁ

[ Python user APIJ { JSON data file]




Design constraints

for HPC
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Genericity: the “pipeline”

m Purpose
m Assemble distributed linear systems resulting from spatial integration on unstructured meshes
m Attach “constraints” to.Iinear systems- 4 cot c1t 10X B
m Solve the (saddle point problems) linear systems co 0 0 ..o DO
m Support all the parallelism Cl 0 o ---||11 ~ D1

m Assembling: spatial integration over (possibly non-conforming) unstructured meshes
m Split global integral over mesh entities: M = ZAq- m(z)dx
i E;

1

m Use finite-element mapping with reference element to integrate using standard quadrature formulae:

M=Y AY wm(E)|det($,(£))], where (z € E;) = ¢,(¢)
m Programming of actual prdblems’through entry points:

* Integrand::addOn — wjm(§)|d€t(¢z(£))‘
* Assembler::assemble — A; - -

m Adverse impact on sequential and // performances

m No predetermined algorithmic motif, very few assumptions in the generic pipeline about what the terminal code will do.
m Multi-zone, multi-PDEs: lots of indirections, complex memory layout
@ m Unstructured meshes



“Automatic parallelism?”

m “Automatic” parallelism: code terminal problems as in sequential

m Generic pipeline: implement everything through the entry points & core tools

m Ghosting
* Each process can replicate any mesh cell owned by another process — ghost cell

* When imported, a ghost entity carries all the data it is related to (e.g. MeshSet belongings), and recursively for its lower dimensional
entities (may induce an excess of communication volume)
* A ghost entity (as a local one) should be the same as in sequential
* Functions to synchronize field values on ghost entities
m Adverse impact on sequential and // performances
m No specific tailored optimization for each problem

m Over-abundance of data transferred when importing cells as ghosts




A few illustrations

compressible fluid dynamics

c

complex behaviors%

£

structural mechanics E

implicit/explicit time integrationg heat transfer
] eulerlanllagranglan methods_% 1D/2D/3D
come;ﬁow,% hybrid high order method
modal solver Mg

phasefield damage stokes problem

ﬁ' o voll
linear/quadratic
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HPC benchmark

Some tools

Languages & compilers

Cla=

reStructurediext

g AG SEMT, 2023-06-27



Roadmap & some
directions for HPC



Geometrical intersections detection with distribuw

" Bhan / Shiah dhan
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parallelism
! Slave Master roc 1
2 Slave L L
3

Master g% gé
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m Antoine Motte’s PhD Thesis

@ AG SEMT, 2023-06-27

FRAR

On doit réaliser Ss N M; Vi,j e [1,p]
Si N M; est séquentiel, S; N M; est parallele Vi # j

L]
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Dynamic load balancing: application to contact
mechanics

Several “stages” in the computation of a time step

m Assembling of the “mass”/“stiffness”/’forces”
m Detection of the contacts

m Assembling of the contact constraints

m Solving of the saddle point problem

“Best partition” different for each stage

m ‘Compromise” to find
m Optimization throughout all the stages

Contact zones may evolve a lot during computation

- "dynamic” load balancing

m Optimal frequency?
m Compromise between the cost of the rebalancing, and
the cost of unbalanced calculations

Interaction with other approaches causing dynamic

load balancing issues: AMR ?

AG SEMT, 2023-06-27

Best if no contact

m Minimal and balanced
communications

m Balanced workloads

Minimizes communications due
to contact
But unbalanced workload

Balanced workload and
communications

But excess of communications
with respect to optimal case



Saddie point problem resolution with iterative
solvers for distributed implicit problems

m Open research subject

m A and C very sparse

.. T
m C/D enforce complex boundary conditions (such as contact A C X o B
between structures) C 0 A D
m Different context than the “classical” Stokes-problem
m size(1) < size(X)
m Matrix free?
m PhD thesis project in collaboration with Sorbonne University
P, P, P, P, P, P, P, P,
starting in 2024 i Bl [ Ip1 B g | | ——
P, e TN e :CE@PJ
Pw P1_ _C1@P1
| | ] "c.er,
- P Jeer,
P: N o P, —C1@P3
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AG SEMT, 2023-06-27 - — L =
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Non conforming Adaptive Mesh refinement

m A priori cell-based
m Forest of structured trees: possibility of specific optimization for structured meshes while keeping the entry points
implementations

m Strong impact on load balancing (dynamic)

m Lot of questions:
m Optimal frequency of the refinement/coarsening < optimal frequency of the load balancing ?
m Which numerical methods (conforming, non-conforming) ?
m Which preconditioners ?




Performance portability

m At this time

m MPI only: decomposition of the global mesh into subdomains: each MPI process works out and stores only its

subdomain (1 subdomain per MPI process)

* “Almost (ghosts) Total” distribution of data

m Vectorization: delegated to Eigen

m Directions for performance portability

m Hybrid MPI+CPU-threads is not a goal in itself
m No architecture specific developments
m Delegation of the performance portability to a programing-model/library/middleware/...

m First prototype with Kokkos in construction




Code generation

m Compromise
m Performance
m Code readability and accessibility
m Factorization of the code
m Use automatic code generation to win on all fronts
m Non-c++/parallel-ninja implement “master code” through a DSL
m Code generator outputs non-factorized and unintelligible but efficient “slave code” implementing MANTA's pipeline
entry points
m Maintenance occurs only on “master code” (and code generator)

m Automatic differentiation to generate code for Jacobian matrices

m Thesis starting in 2024 to work on that







