
Loïc Maréchal / INRIA, November 2023

GMlib v3
A framework to develop numerical simulation software on GPUs

Context and motivation

• CPUs sequential and multicore speed is staling

• The only way to keep up increasing the speed: specialized compute units (GPU, FPGA, vector
coprocessors,...)

• Simplicity, efficiency and general purpose: you cannot have them all !

• GMlib: easy and efficient, but dedicated to mesh data structures (hybrid and unstructured)

• Based on OpenCL, an open and multiplatform library (CPU and GPU, AMD and NVIDIA, Linux,
macOS and Windows)

• It handles the most complex tasks on a GPU: vectorized and efficient storage and memory
access to unstructured data

• Programming is straightforward: very close to ANSI C or Fortran77

Using GPU shaders in a meshing context
How to repurpose a well-known and tried graphic technic

• All data types, their storage and transfer are taken care of by the GMlib, you cannot
use your own data structures

• All meshing data types are supported: vertices, triangles, quads, tets, pyramids,
prisms and hexes

• Any kind of solution field can be associated with a mesh data type: scalar, vector or
tables made of integers, single or double precision types

• All possible topological links between any pair of mesh entities are automatically
deducted and generated by the library: neighbours, shells, balls, ...

• A KERNEL loops over a single kind of element and can access indirectly to any other
mesh entity or solution field requested by the programer

How does it work ?

• GmlInit(GPU_device_index)

• GmlImportMesh("tets.meshb", GmfVertices, GmfTetrahedra)

• TetQal = GmlNewSolutionData(GmlTetrahedra, 1, GmlFlt, "quality")

• krn = GmlCompileKernel("get_quality", GmlTetrahedra, 2, VerIdx,
GmlReadMode, NULL, TetQal, GmlWriteMode, NULL)

• GmlLaunchKernel(krn)

• GmlExportSolution("qualities.solb", TetQal)

Challenges
A program that generates another program...

• The loop is handled by the GMlib, you only write the inner (kernel) part

• You can only access the data related to the item index being processed

• All variables are defined and filled automatically

• This is the same for memory writes that are handled by the library

• The same mesh entity changes name depending on the loop's context

• Memory can be read directly or indirectly but writing can only be direct

• You need to split indirect memory writes into a pair of scatter / gather loops

Writing and compiling a kernel

• Define your mesh data, and solution fields associated, by choosing the right kind
(scalar, vector, integer, single, double,etc.)

• Initialize the GMlib's data structures with your own data (or import them from a file)

• From the main C code, you need to provide the loop's OpenCL source code to
compile, the mesh kind to loop over, and the list of data structures to be read or
written by the loop

• In each kernel, the names of variables are defined based on the storage type, the loop
main entity and the entity being accessed: for example, a loop over triangles that
needs to read the vertices coordinates will trigger the following definition, float3
TriCrd[3], because a triangle (Tri) is made of three sets of coordinates (Crd[3]) that are
stored in a 3D vector (float3)

Advantages
Programing is a lazy guy's job

• All I/O are performed with a single function call to ImportMesh() or ExportSolution()

• The whole complexity related to topological aspects of unstructured meshes is
handled by the library: Hilbert renumbering, balls of points, shells of edges, hashing,
neighbours, etc.

• On the GPU side, many geometrical functions written in OpenCL are provided: area,
distance, volume, element quality, projections, intersections, etc.

• The GMlib is working on many different architectures: CPUs (it uses the multithreading
and vector acceleration), integrated GPUs (Intel HD graphics) and discrete GPUs from
smartphones, tablets, PC and Mac running macOS, Linux or Windows

• Code and data are automatically vectorized: this is the most complex aspect of GPUs

Heat Cell Centered
A basic first order solver developed par Julien Vanharen

• Solves the heat equation

• Dirichlet and Neumann boundary conditions based on triangle references that
are automatically sorted and grouped to avoid the GPU's severe dynamic
branching penalty

• Scatter-gather pair: it first loops over the triangles while accessing the two
neighbouring tets (uplink) to compute the temperature gradient, then loops
over the tets to assemble the triangles' contributions (downlink)

• Advances the time step

• Computes a residual value by reducing the flux gradient vector (GmlReduce)

• The mesh is made of 200.000 nodes, 33.000 boundary triangles and 1.150.000 tetrahedra

• The source code is made of 230 lines of C and 52 lines of OpenCL

• Library overhead is 1.8s: mesh reading, extraction of inner faces, building the
neighbourhoud relations between triangles and tets, kernels compiling, transferring all data
to the GPU, getting back and writing the data to the disk

• 11,000 iterations needed to converge the residual down to 1E-6 -> 10 billion tetra-
iterations !

• Laptop 4-core i7 @2.6 GHz : 360s and Radeon Pro 460, 1024 units @0.9 GHz: 65s

• Desktop 16-core Xeon @3.2 GHz : 111s and Radeon Pro Vega II, 4096 units @1.7 GHz: 8.8s

• The speed ratio between the CPU (all cores) and the GPU does not change much regarding
the machine, laptop, desktop or server, because the components' speed is growing with the
host machine electric power

Runtime statistics

Future developments
• Distribute the workload across multiple GPUs: this capacity is needed because of

memory constrains rather than lack of speed. A GPU is an order of magnitude
faster than a CPU but its memory is one or two orders of magnitude smaller!

• The distribution of calculations and the data exchange could be handled
transparently by the library, thanks to the GMlib complete management of all data

• We need a comprehensive distributed framework: collaboration INRIA/ONERA

• We also need more use cases: as for now, only Wolf (CFD), Hexotic (node
smoothing), HeatCellCentered, a high-order mesh quality evaluation code and a
few other small demonstrators use the GMlib

• Offer a complete geometrical and topological toolkit: the current V3 features only
the minimum needed to support the codes aforementioned

Conclusion
• Today there is no more "on size fits all" to keep up with the Moore's law, the

programer needs a toolbox covering all available technologies: CPU,
multithreading, MPI, GPU, FPGA, vectors, and he needs to know which to use
in the right situation!

• The GPUs offer a better perspective in terms of scaling compared to the
multicore CPUs that are stalling because of the memory access bottleneck
(CPU with HBM ?)

• Abstracting away the data structures in a parallel framework is quite a
hindrance from the programer's point of view but allows for much higher
performance scalability and portability across different hardware

• The Jean ZAY supercomputer with its 1024 GPUs is waiting for us ;-)

