

Exa-DI Co-design Motif Workshop

Efficient discretisation for PDEs @ exascale

J-P. Vilotte (CNRS), PI Exa-DI project

NumPEx: 5 years national project (CNRS, CEA, INRIA, Universities) - 40,8 M€ Coordinators: J.Y. Berthoud (INRIA), J. Bobin (CEA), M. Krajecki (CNRS)

Aggregate the French HPC/HPDA/AI community, foster new collaborations and synergies

Co-develop, integrate, validate and deliver an expanded exascale software stack to accelerate Exascale applications productivity and sustainability

Contribute and accelerate the emergence of a European sovereign exascale software stack and performant strategic exascale applications

Build a multidisciplinary national workforce and develop training to improve CSE application development and software integration methodologies

NumPEx: Capable Exascale

strategical applications **NumPEx** Expanded and integrated

Co-design & demonstrator applications

Research & Software

NumPEx work plan

Exa-DI project

Challenges:

- Exascale CS&E applications.
- Expanded Exascale science-driven software stack.
- Exascale software components integration, deployment and reuse.
- Exascale application performance portability and sustainability.

Objectives:

- Co-analyse CSE application demonstrators (ADs) across NumPEx
- Co-identify cross-cutting computational and communication motifs
- Co-develop libraries, frameworks, proxy and mini apps
- Co-develop Community Software Policies and sustainable software foundations
- Integrate and deliver interoperable SDKs as needed by the Exascale ADs
- Exercise, expand and harden sustainable core components for performance portable programming models (e.g. Kokkos, Raja)
- Establish a national computational data team to enable agile co-design projects
- Broaden awareness/use of robust software components in exascale application development methodologies

Team: CNRS, CEA, INRIA

Budget: 9,3 M€ (including CoEs co-funding)

Exa-DI International Context

Co-designed software portfolios, proxy-apps & benchmarking

Context:

- Exascale Computing Project (ECP): DOE, NSF
- Fugaku & Fugaku NEXT co-design projects
- Euro-HPC JU initiatives, ETP4HPC

Problematics:

- CSE applications development methodologies, accuracy & performance portability
- Co-designed application-driven software technology and logical software components portfolios
- Proxy-apps / many-apps suites
- Hardware & Integration, Testing & Profiling tools, Benchmarking specifications

NumPEx

Exascale computing

CSE application demonstrators

Exascale Challenges

- Heterogeneous exascale and post-exascale architectures
- New multi physics and multi-scale capability
- On-line streaming data analysis /reduction
- AI-enabled big data analytics and dimension reduction
- New mathematical approaches and model improvements
- Leveraging robust and accurate logical collection of interoperable software components (libraries, tools and frameworks)
- Improving performance portability by exercising new performance portable programming models
- New scalable task-based programming and execution models
- Fondations for a sustainable exascale scientific software stack

Astronomy & Astrophysics Earth System Models & environment

- Environmental extreme events Computational biology & Life science
- Laboratory laser-plasma physics High-energy particle physics Quantum chemistry and materials Digital health
 - Environmental & societal risks Urban systems planing
 - Magnetically confined fusion plasma (ITER)

...

Sustainable Transport & mobility Energy production & transport

Co-designed computational and communication motifs

Objectives

- proceed and integrating logical suites of software components and tools with emerging hardware technologies
- acceleration and requirements feedback.
- stack, streamline developper and user workflows, and coordinate releases

Flexibility/Interoperability

- support a wide range of CSE application algorithmic requirements
- enable exploration of new algorithms and frameworks as need by the CSE applications.
- avoid unnecessary restrictions on programming models and how application developers construct their algorithms
- allow application developers to interact with software components at different levels of abstraction
- exercise and harden abstraction layers (e.g. Kokkos, Raja) for hardware-aware technologies

Proxy and mini app suites

- represent algorithms, data structures and layouts, optimisation and other computational characteristics
- allow to measure performance gain, scalability, performance portability, and software quality
- enable continuous integration, testing and benchmarking experiments with standardised performance tools to guide optimisations, understand bottlenecks and trade-off between software components

• Deliver software development kits easily deployable and instantiated into CSE application environments for testing, development

• Facilitate collaboration between software packages, enable integration and/or interoperability with overall NumPEx technologies

Cross-cutting computation and communication motifs

Efficient discretisation for PDEs @ Exascale

• PDE-based multi-physics multi-scale simulations (FV, FEM, SEM, HDG), unstructured hexahedral and tetrahedral meshes, AMR

Block-structured AMR @ Exascale

• *Multi-physics CFD, transport and particle-based simulations*

Particle-based methods @ Exascale

• *MD, QMD, AIMD, gravitational N-body, SPH, PIC simulations*

On-line analysis @ Exascale

• Online analysis, reduction, aggregation, AI-based multi physics and multi-scale coupling

Big data analytics @ Exascale

• Al-based data analytics, scattering transform, detection, classification, reinforcement *learning, manifold learning, DML training*

Artificial Intelligence @ Exascale

• Physics-based machine learning, PINNs, surrogate models, DML learning, AI-based *inverse, inference, control and design problems*

Combinatorial methods @ Exascale

• Static and dynamic combinatorial (graph) kernels at scale

Cross-cutting co-design algorithmic motifs

- Accelerate the development and improve performance portability of exascale ADs
- Address common patterns of communication and computation
- Improve scientific software development methodologies balancing trade-off between fine-grained control and modularity based on integrated/interoperable libraries

Agile co-development projects

- Co-analyse existing software components, e.g. from ECP co-design centres
- Co-identify gaps and missing functionalities as needed by the ADS
- Co-develop logical software components (libraries, programming and execution models, frameworks) with different interoperability levels and abstraction layers
- Integrate into re-usable SDKs that can be easily managed, deployed and instantiated as needed by ADs
- Co-develop meaningful proxy-apps and mini-apps to integrate, test and benchmark the developed software components (performance, trade-offs)

Exa-DI flow of product delivery and deployment

ExaDI Software Development Kits (SDKs)

Software Development Kits

Logical collections of value-added interoperable software components as needed by ADs,

• Integrated and delivered using meta-builder and container systems enabling a combined deployment on exascale systems and combination as needed by CSE applications

Community Software Policies

Improve software quality, usability, access and sustainability;

- Provide foundation for deeper levels of interoperability
- Establish a certification process to label software (maturity, portability, compliance)

Software packaging and deployment technologies

Promote common Meta-builder systems (e.g. SPACK, GUIX, NIX) and container technologies (e.g. Singularity) • Extend/harden new capabilities enabling deployment on exascale systems and regression testing

Software Integration hub

Enable access to externally managed software integration and testing platforms Synergetic collaborations with national computing facilities, vendors and other initiatives

Efficient Discretisation for PDEs @ Exascale

Ecosystem

- Unstructured PDE discretisation libraries
- High-order meshes libraries
- Unstructured adaptive mesh refinement
- Dynamic unstructured anisotropic meshing
- Efficient high-order operator format / Representation
- Batched dense tensor contractions
- Distributed linear algebra operations
- Scalable matrix-free solvers
- General interpolation
- Visualisation of high-order meshes and functions

NumPEx Application Demonstrators

- Climate/Ocean
 - ► Croco, PEPR TRACCS
- Aeronautics/CFD, Combustion
 - Sonics/Onera, Safran/INRIA, Yales2
- Magnetically confined fusion plasma ► Gisela-X
- Earth & environment
 - ► GEOXIM-IFPEN, GEOSX-Total
 - ► CoE ChEESE-2P: xSHELLS, SPECFEM3D
- Coupled Urban systems
- *CoE Hidalgo2, OpenFOAM*
- Industrial Risk & Safety evaluation
- Manta

Software components, standards

- <u>PyPI</u>
- ParMmq, DDC, CGGAL, MED/Coupling, AGIOS, HDF5, StarPU, Dask, Deisa, Kokkos-Kernels, PyPi

OCCA API Performance portability

• ECP CEED: MFEM, LibCEED, LibParanumal, PUMI, Omega_h, MAGMA, PETSc, SUNDIALS, Hypre, SLEPc, SuiteSparse, Gingko, METIS, GLVis, Vislt, ParaView, Umpire, OCCA, RAJA, HDF5/ADIOS,

• NumPEx: Feel++, Freefem++, GEOSX, MANTA, Mathphys++, Gyselalibx, PetSc, Hypre, MUMPS, PaStiX, Chameleon, HPDDM, Alien, Scotch, PARADIGM/CWPI, METIS, GAMMA's mesh, Mmg/

Workshop objectives and return

Develop and share a common understanding of:

- streamline developper and user workflows, maintaining testing and benchmarking, and coordinate SDK releases
- CDT application liaisons and one-to-many interactions based on the development of efficient discretisation for PDEs @ exascale

Co-identify across several ADs:

- existing exascale software issues and barriers,
- development and improving their performance portability

Co-analyse the software stack developed in the ECP CEED project:

- what software components can be leveraged,
- what gaps and missing functionalities need to be addressed
- what new complementary and/or alternative components need to be co-developed by agile teams (objectives, deliverables)
- what mini-apps and proxy-apps need to be co-developed with the ADs and shared with specifications for testing and benchmarking methodologies

Co-define agile co-development teams

- identified contributions of different R&D teams in-and-across the NumPEx PCs, and of the ADs,
- necessary resources and expertises to be gathered in the CDT to drive the agile co-development process

Organise follow-up with series of identified deep-dive sessions

- Exa-DI co-design and co-development agile process driving collaboration between software packages, integration and/or interoperability with overall NumPEx technologies, - role and responsibility in this process between the R&D teams in the different NumPEx PCs, the ADs' development teams, and the Exa-DI Computational and Data Team

• software components (libraries, frameworks, abstraction layers, programming and execution environments) to be developed and integrated for accelerating exascale ADs