

ANKH: A scalable divide and conquer strategy for energy computation on modern HPC architectures

Olivier Adjoua, Igor Chollet, Louis Lagardère, Jean-Philip Piquemal Numpex 07/02/24

Tinker-hp is a pre-exascale, multi-CPUs, multi-GPUs, multi-precision package dedicated to long molecular dynamics simulations with classical and polarizable force fields.

Tinker-hp is a pre-exascale, multi-CPUs, multi-GPUs, multi-precision package dedicated to long molecular dynamics simulations with classical and polarizable force fields.

Rely on Ewald Summation and large-scale FFTs for fast computations.

Tinker-hp is a pre-exascale, multi-CPUs, multi-GPUs, multi-precision package dedicated to long molecular dynamics simulations with classical and polarizable force fields.

Rely on Ewald Summation and large-scale FFTs for fast computations.

Tinker-hp is a pre-exascale, multi-CPUs, multi-GPUs, multi-precision package dedicated to long molecular dynamics simulations with classical and polarizable force fields.

Rely on Ewald Summation and large-scale FFTs for fast computations.

Fast Multipole Methods as alternative to Ewald Summation?

Tinker-hp is a pre-exascale, multi-CPUs, multi-GPUs, multi-precision package dedicated to long molecular dynamics simulations with classical and polarizable force fields.

Rely on Ewald Summation and large-scale FFTs for fast computations.

Fast Multipole Methods (FMM) as alternative to Ewald Summation?

 \rightarrow Solve scalability in non-polarizable case, may induce errors on forces.

Tinker-hp is a pre-exascale, multi-CPUs, multi-GPUs, multi-precision package dedicated to long molecular dynamics simulations with classical and polarizable force fields.

Rely on Ewald Summation and large-scale FFTs for fast computations.

FMM-based Ewald Summation?

Tinker-hp is a pre-exascale, multi-CPUs, multi-GPUs, multi-precision package dedicated to long molecular dynamics simulations with classical and polarizable force fields.

FMM-based Ewald Summation?

→ ANKH: scalable, fast, adapted to classical and polarizable force field, controlled error bounds, including GPU and CPU+GPU formulations

Energy calculation

$$\mathcal{E} := \sum_{\boldsymbol{t} \in 2r_{\mathcal{B}}\mathbb{Z}^3} \sum_{\boldsymbol{x}} \sum_{\boldsymbol{y}} \mathfrak{D}_{\boldsymbol{x}} \mathfrak{D}_{\boldsymbol{y}} |\boldsymbol{x} - \boldsymbol{y} + \boldsymbol{t}|^{-1}$$

with r_B the box radius and $\mathfrak{D}_{\mathbf{x}} := q_{\mathbf{x}} + \mu_{\mathbf{x}} \cdot \nabla_{\mathbf{x}} + \Theta_{\mathbf{x}} : \nabla^2$.

•	•	•			
•_•	•_•	•	•		0_0
•	•	t	x		
•	•	•	•		
•_•	•	•	•	•	
•	•	•	•	•	•

Energy calculation

$$\mathcal{E} := \sum_{\textbf{t} \in 2r_{\text{R}} \mathbb{Z}^3} \sum_{\textbf{x}} \sum_{\textbf{y}} \mathfrak{D}_{\textbf{x}} \mathfrak{D}_{\textbf{y}} |\textbf{x} - \textbf{y} + \textbf{t}|^{-1}$$

with r_B the box radius and $\mathfrak{D}_{\mathbf{x}} := q_{\mathbf{x}} + \mu_{\mathbf{x}} \cdot \nabla_{\mathbf{x}} + \Theta_{\mathbf{x}} : \nabla^2$.

Problem: the sum over t's only conditionally converges and the convergence is very slow.

Energy calculation

$$\mathcal{E} := \sum_{\boldsymbol{t} \in 2r_{\mathcal{B}} \mathbb{Z}^3} \sum_{\boldsymbol{x}} \sum_{\boldsymbol{y}} \mathfrak{D}_{\boldsymbol{x}} \mathfrak{D}_{\boldsymbol{y}} |\boldsymbol{x} - \boldsymbol{y} + \boldsymbol{t}|^{-1}$$

with r_B the box radius and $\mathfrak{D}_{\mathbf{x}} := q_{\mathbf{x}} + \mu_{\mathbf{x}} \cdot \nabla_{\mathbf{x}} + \Theta_{\mathbf{x}} : \nabla^2$.

$$\begin{split} \mathcal{E} &= \mathcal{E}_{real} + \mathcal{E}_{rec} + \mathcal{E}_{self} \\ \mathcal{E}_{real} &:= \sum_{\mathbf{t}} \sum_{\mathbf{x}} \sum_{\mathbf{y}} \mathfrak{D}_{\mathbf{x}} \mathfrak{D}_{\mathbf{y}} \left(\frac{erfc\left(\xi | \mathbf{x} - \mathbf{y} + \mathbf{t} |\right)}{|\mathbf{x} - \mathbf{y} + \mathbf{t}|} \right), \\ \mathcal{E}_{rec} &:= \frac{1}{2\pi (2r_B)^2} \sum_{\mathbf{m} \neq \mathbf{0}} \frac{e^{-2\left(\frac{\pi r_B}{\xi}\right)^2 \mathbf{m} \cdot \mathbf{m}}}{\mathbf{m} \cdot \mathbf{m}} S(\mathbf{m}) S(-\mathbf{m}), \\ S(\mathbf{m}) &:= \sum_{\mathbf{x}} e^{j\frac{\pi}{r_B} \mathbf{m} \cdot \mathbf{x}} (q_{\mathbf{x}} + 2i\pi r_B \mu_{\mathbf{x}} \cdot \mathbf{m} - (2\pi r_B)^2 \Theta_{\mathbf{x}} : (\mathbf{mm}^T)), \\ \mathcal{E}_{self} &:= -\frac{\xi}{\sqrt{\pi}} \sum_{\mathbf{x}} \left(q_{\mathbf{x}}^2 + \frac{2\xi^2}{3} \mu_{\mathbf{x}} \cdot \mu_{\mathbf{x}} + \frac{8\xi^4}{5} \Theta_{\mathbf{x}} : \Theta_{\mathbf{x}} \right). \end{split}$$

Particle Mesh Ewald (PME)

Find optimal ξ , apply cutoff for \mathcal{E}_{real} , compute $S(\mathbf{m})$'s using interpolation and Fast Fourier Transforms.

$$\begin{split} \mathcal{E} &= \mathcal{E}_{real} + \mathcal{E}_{rec} + \mathcal{E}_{self} \\ \mathcal{E}_{real} &:= \sum_{\mathbf{t}} \sum_{\mathbf{x}} \sum_{\mathbf{y}} \mathfrak{D}_{\mathbf{x}} \mathfrak{D}_{\mathbf{y}} \left(\frac{erfc\left(\xi | \mathbf{x} - \mathbf{y} + \mathbf{t} |\right)}{|\mathbf{x} - \mathbf{y} + \mathbf{t}|} \right), \\ \mathcal{E}_{rec} &:= \frac{1}{2\pi (2r_B)^2} \sum_{\mathbf{m} \neq \mathbf{0}} \frac{e^{-2\left(\frac{\pi r_B}{\xi}\right)^2 \mathbf{m} \cdot \mathbf{m}}}{\mathbf{m} \cdot \mathbf{m}} S(\mathbf{m}) S(-\mathbf{m}), \\ S(\mathbf{m}) &:= \sum_{\mathbf{x}} e^{i\frac{\pi}{r_B} \mathbf{m} \cdot \mathbf{x}} (q_{\mathbf{x}} + 2i\pi r_B \mu_{\mathbf{x}} \cdot \mathbf{m} - (2\pi r_B)^2 \Theta_{\mathbf{x}} : (\mathbf{mm}^T)), \\ \mathcal{E}_{self} &:= -\frac{\xi}{\sqrt{\pi}} \sum_{\mathbf{x}} \left(q_{\mathbf{x}}^2 + \frac{2\xi^2}{3} \mu_{\mathbf{x}} \cdot \mu_{\mathbf{x}} + \frac{8\xi^4}{5} \Theta_{\mathbf{x}} : \Theta_{\mathbf{x}} \right). \end{split}$$

Particle Mesh Ewald (PME)

Find optimal ξ , apply cutoff for \mathcal{E}_{real} , compute $S(\mathbf{m})$'s using interpolation and Fast Fourier Transforms \rightarrow possibly "poor" scaling on distributed memory

$$\begin{split} \mathcal{E} &= \mathcal{E}_{real} + \mathcal{E}_{rec} + \mathcal{E}_{self} \\ \mathcal{E}_{real} &:= \sum_{\mathbf{t}} \sum_{\mathbf{x}} \sum_{\mathbf{y}} \mathfrak{D}_{\mathbf{x}} \mathfrak{D}_{\mathbf{y}} \left(\frac{erfc\left(\xi | \mathbf{x} - \mathbf{y} + \mathbf{t} |\right)}{|\mathbf{x} - \mathbf{y} + \mathbf{t}|} \right), \\ \mathcal{E}_{rec} &:= \frac{1}{2\pi (2r_B)^2} \sum_{\mathbf{m} \neq \mathbf{0}} \frac{e^{-2\left(\frac{\pi r_B}{\xi}\right)^2 \mathbf{m} \cdot \mathbf{m}}}{\mathbf{m} \cdot \mathbf{m}} S(\mathbf{m}) S(-\mathbf{m}), \\ S(\mathbf{m}) &:= \sum_{\mathbf{x}} e^{i\frac{\pi}{r_B} \mathbf{m} \cdot \mathbf{x}} (q_{\mathbf{x}} + 2i\pi r_B \mu_{\mathbf{x}} \cdot \mathbf{m} - (2\pi r_B)^2 \Theta_{\mathbf{x}} : (\mathbf{m} \mathbf{m}^T)), \\ \mathcal{E}_{self} &:= -\frac{\xi}{\sqrt{\pi}} \sum_{\mathbf{x}} \left(q_{\mathbf{x}}^2 + \frac{2\xi^2}{3} \mu_{\mathbf{x}} \cdot \mu_{\mathbf{x}} + \frac{8\xi^4}{5} \Theta_{\mathbf{x}} : \Theta_{\mathbf{x}} \right). \end{split}$$

New simple idea

Choose very small ξ (in practice, $\xi \approx 0.01$) and exploit fast hierarchical techniques for *N*-body problems to compute \mathcal{E}_{real} .

$$\begin{split} \mathcal{E} &= \mathcal{E}_{real} + \mathcal{E}_{rec} + \mathcal{E}_{self} \\ \mathcal{E}_{real} &:= \sum_{\mathbf{t}} \sum_{\mathbf{x}} \sum_{\mathbf{y}} \mathfrak{D}_{\mathbf{x}} \mathfrak{D}_{\mathbf{y}} \left(\frac{erfc\left(\xi | \mathbf{x} - \mathbf{y} + \mathbf{t} |\right)}{|\mathbf{x} - \mathbf{y} + \mathbf{t}|} \right), \\ \mathcal{E}_{rec} &:= \frac{1}{2\pi (2r_B)^2} \sum_{\mathbf{m} \neq \mathbf{0}} \frac{e^{-2\left(\frac{\pi r_B}{\xi}\right)^2 \mathbf{m} \cdot \mathbf{m}}}{\mathbf{m} \cdot \mathbf{m}} S(\mathbf{m}) S(-\mathbf{m}), \\ S(\mathbf{m}) &:= \sum_{\mathbf{x}} e^{i\frac{\pi}{r_B} \mathbf{m} \cdot \mathbf{x}} (q_{\mathbf{x}} + 2i\pi r_B \mu_{\mathbf{x}} \cdot \mathbf{m} - (2\pi r_B)^2 \Theta_{\mathbf{x}} : (\mathbf{m} \mathbf{m}^T)), \\ \mathcal{E}_{self} &:= -\frac{\xi}{\sqrt{\pi}} \sum_{\mathbf{x}} \left(q_{\mathbf{x}}^2 + \frac{2\xi^2}{3} \mu_{\mathbf{x}} \cdot \mu_{\mathbf{x}} + \frac{8\xi^4}{5} \Theta_{\mathbf{x}} : \Theta_{\mathbf{x}} \right). \end{split}$$

New simple idea

Choose very small ξ (in practice, $\xi \approx 0.01$) and exploit fast hierarchical techniques for *N*-body problems to compute \mathcal{E}_{real} .

$$\begin{split} \mathcal{E} &= \mathcal{E}_{\textit{real}} + \mathcal{E}_{\textit{rec}} + \mathcal{E}_{\textit{self}} \\ \mathcal{E}_{\textit{real}} &:= \sum_{\textbf{t} < \mathcal{T}_{\textit{conv}}} \sum_{\textbf{x}} \sum_{\textbf{y}} \mathfrak{D}_{\textbf{x}} \mathfrak{D}_{\textbf{y}} \left(\frac{\textit{erfc}\left(\xi | \textbf{x} - \textbf{y} + \textbf{t} | \right)}{|\textbf{x} - \textbf{y} + \textbf{t}|} \right), \\ \mathcal{E}_{\textit{rec}} &\approx \textbf{0}, \\ \mathcal{E}_{\textit{self}} &= \textit{easy to compute quantity.} \end{split}$$

N-body problems

<u>Notations</u>: $\mathbb{C}[Z]$ the set of application from *Z* to \mathbb{C} . The cardinal of *Z* is denoted #Z. $\mathbb{C}[Z]$ isomorphic to $\mathbb{C}^{\#Z} = \mathbb{C} \times ... \times \mathbb{C}$.

Goal: given \mathbb{X} and \mathbb{Y} two point clouds, quickly evaluate

 \mathbb{G} : $\mathbb{C}[\mathbb{Y}] \to \mathbb{C}[\mathbb{X}]$ such that $\forall q \in \mathbb{C}[\mathbb{Y}]$

$$\left(\mathbb{G}\cdot q
ight)(\mathbf{x}):=\sum_{\mathbf{y}\in\mathbb{Y}}G(\mathbf{x},\mathbf{y})q(\mathbf{y}), \qquad orall \, \mathbf{x}\in\mathbb{X},$$

 $G : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{C}$ asymptotically smooth and singular at $\mathbf{x} = \mathbf{y}$, such as Coulomb kernel $G(\mathbf{x}, \mathbf{y}) := \frac{1}{|\mathbf{x} - \mathbf{y}|}$.

i

									L	L							1	L														
	_		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-			_							-		-	
нн	-		н	+	+	н	н	+	+	⊢	H	н	H	-	-	+	+	۰	H	н	H	н	-	н	н	н	н	н	н	н	н	-
нн	-	-	н	+	+	Н	н	+	+	⊢	H	н	H	-	+	+	+	⊢	H	н	н	Н	-	Н	н	Н	н	н	н	н	н	-
нн			н	+	+	H	н	+	t	⊢	H	н	H	-	-	+	+	t	t	н		H	-	H	H	Н	н	н	н	H	н	-
нн			н	+	+	H	Н	+	t	t	H	н	H	-	-	+	+	t	H	Н						H	Н	н	н		а	-
нн			н	+	+	H		+	t	F		н		-	-	+	t	t	t	Н			-			Н	Н	н	н		н	-
нн			н	+	T	Н			t	F		н			1	+	t	t	t	Н						Н		н			п	-
					Т			Т	Г	Γ							Т	Г														
																		L														
	_	_	-	-	-	_	_	-	-	-	-	_	_		_	-	-	-	-	_	_	_	_	_	_	_	_	-	_	_	_	
нн	+	-	н	+	+	н	н	+	+	⊢	H	н	н	-	-	+	+	۰	+	Н	н	H	н	H	н	Н	н	н	н	н	н	
μц	-		-	_		-		_		-	-			_	_	_					-		-					-		-		-
	-		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-													-	-
нн	-		н	+	+	Н	H	+	+	⊢	H	н	H	-	-	+	+	۰	H	н	H	Н	-	Н	н	Н	н	н	н	н	н	-
нн	-		н	+	+	H	н	+	+	⊢	H	н	H	-	-	+	+	t	H	н		H	-	H	н	Н	н	н	н	H	н	-
		_		-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	П	Т	П	т	Т	П		Т	Т	г			П		Т	Т	т	Т	П									П			П	-
				т	Т			т	г	Г						Т	т	г														_
	-				Т				Г	Г							Т	Г														_
									Г								Т	Г							-							
									-					_		_	Т	L														
\square		_	Ц	_	+	Ц		_	1	⊢	_			_	_	_	+	⊢	1				_			Ц					н	_
ΗН	_	-	н	+	+	н	4	_	+	⊢	-	Ц	4	_	4	4	+	⊢	-	Ц			_			н		н	Ц		н	_
нн	+	-	н	+	+	н	н	+	+	⊢	H	н	н	-	-	+	+	۰	+	Н	н	H	н	Н	н	Н	н	Н	н	н	н	
нн	+	-	н	+	+	н	н	+	۰	⊢	H	н	н	-	-	+	+	۰	+	Н	н	H	н	Н	н	Н	Н	н	н	н	н	-
سب		-	-	-		-	ш	-		-	-	-	ч	-	-	_		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			-	-	-			-	-	-				-	-	-	T	T										Ċ,				-
HH		-	H	+	+	H	н	+	۰	t	H	н	н	-	+	+	۰	t	t	Н	Н	Н	Н	Н	Н	H	Н	н	н	Н	н	-
нн			н	+	+	H	Н	+	t	t	H	н	H	-	-	+	+	t	t	Н	Н	Н		Н	н	Н	н	н	н	Н	н	-
нн			Н	+	+	Ħ	н	+	t	t	F	н	н	-	1	+	t	t	t	Н		H		H	H	H	Н	н	н		н	-
			Н	+	+	Ħ	Н	+	t	F		н	Н	-	1	+	t	t	t	Н				Н	Н	П	Н	П	Н		н	-
			п	т	т	П		т	г	г						т	т	г	Г									П			П	-
					Т	Г			Г	Г							Т	Г	Г													-
			Г		Г	Г			Г	Г				1			Г	Г	Г													

 -		_		
11				
11			п.	
 11			п.	
11			п.	
11			п	
11	н	нн	н	
11	н	нн	н	
П				
11	п		п	
11	п		п	ннннн
 	ш			
11	Н		Н	
11	H		H	
	Ħ		Ħ	
	H			
	H			

Fast Multipole Methods

Ingredients of a FMM

Strategy:

- Introduce a hierarchical space representation (2^d-tree)
- Define a Multipole Acceptance Criterion
- Find way of aggregate and scatter expansions
 Multipole Acceptance Criterion

Gathering / scattering

Near and far field separation

Stack

Sparsity of the far field matrix

Suppose that *t* and *s* are two admissible cells. We have:

$$\sum_{\mathbf{y}\in Y_{|s}} G(\mathbf{x},\mathbf{y})q(\mathbf{y}) \approx \sum_{k=1}^{r} S_k(\mathbf{x}) \sum_{l=1}^{r} G(\mathbf{x}_k,\mathbf{y}_l) \sum_{\mathbf{y}\in Y_{|s}} S_l(\mathbf{y})q(\mathbf{y})$$

Sparsity of the far field matrix

Suppose that *t* and *s* are two admissible cells. We have:

$$\sum_{\mathbf{y}\in Y_{|s}} G(\mathbf{x},\mathbf{y})q(\mathbf{y}) \approx \sum_{k=1}^{r} S_k(\mathbf{x}) \sum_{l=1}^{r} G(\mathbf{x}_k,\mathbf{y}_l) \sum_{\mathbf{y}\in Y_{|s}} S_l(\mathbf{y})q(\mathbf{y})$$

ANKH

Le *H* be the following asymptotically smooth kernel¹

$$H(\mathbf{x}, \mathbf{y}) := \frac{\textit{erfc}(\xi |\mathbf{x} - \mathbf{y}|)}{|\mathbf{x} - \mathbf{y}|}$$

Using (Chebyshev-)Lagrange polynomial interpolation²:

$$\sum_{\mathbf{x}\in t} \sum_{\mathbf{y}\in s} \mathfrak{D}_{\mathbf{x}} \mathfrak{D}_{\mathbf{y}} H(\mathbf{x}, \mathbf{y}) \approx \sum_{k} \underbrace{\left(\sum_{\mathbf{x}\in t} \mathfrak{D}_{\mathbf{x}} \mathcal{S}_{k}[t](\mathbf{x})\right)}_{=:\mathcal{Q}_{t}(\mathbf{x}_{k}^{t})} \sum_{l} H(\mathbf{x}_{k}^{t}, \mathbf{y}_{l}^{s}) \underbrace{\left(\sum_{\mathbf{y}\in s} \mathfrak{D}_{\mathbf{y}} \mathcal{S}_{l}[s](\mathbf{y})\right)}_{=:\mathcal{Q}_{s}(\mathbf{y}_{l}^{s})}$$
$$= \sum_{k} \mathcal{Q}_{t}(\mathbf{x}_{k}^{t}) \sum_{l} H(\mathbf{x}_{k}^{t}, \mathbf{y}_{l}^{s}) \mathcal{Q}_{s}(\mathbf{y}_{l}^{s}).$$

¹Badreddine, C., Grigori, Journal of Computational Physics (2023) ²C., Lagardère, Piquemal, Journal of Chemical Theory and Computation (2023)

Le H be the following asymptotically smooth kernel¹

$$H(\mathbf{x}, \mathbf{y}) := \frac{\textit{erfc}(\xi |\mathbf{x} - \mathbf{y}|)}{|\mathbf{x} - \mathbf{y}|}$$

Using (Chebyshev-)Lagrange polynomial interpolation²:

$$\sum_{\mathbf{x}\in t} \sum_{\mathbf{y}\in s} \mathfrak{D}_{\mathbf{x}} \mathfrak{D}_{\mathbf{y}} H(\mathbf{x}, \mathbf{y}) \approx \sum_{k} \underbrace{\left(\sum_{\mathbf{x}\in t} \mathfrak{D}_{\mathbf{x}} \mathcal{S}_{k}[t](\mathbf{x})\right)}_{=:\mathcal{Q}_{t}(\mathbf{x}_{k}^{t})} \sum_{l} H(\mathbf{x}_{k}^{t}, \mathbf{y}_{l}^{s}) \underbrace{\left(\sum_{\mathbf{y}\in s} \mathfrak{D}_{\mathbf{y}} \mathcal{S}_{l}[s](\mathbf{y})\right)}_{=:\mathcal{Q}_{s}(\mathbf{y}_{l}^{s})}$$
$$= \sum_{k} \mathcal{Q}_{t}(\mathbf{x}_{k}^{t}) \sum_{l} H(\mathbf{x}_{k}^{t}, \mathbf{y}_{l}^{s}) \mathcal{Q}_{s}(\mathbf{y}_{l}^{s}).$$

Problem: $S'_k(x) = \frac{2}{L\sqrt{1-x^2}} \sum_{m=1}^{L-1} mT_m(x_k) sin(m acos(x))$, numerically unstable!

¹Badreddine, C., Grigori, Journal of Computational Physics (2023) ²C., Lagardère, Piquemal, Journal of Chemical Theory and Computation (2023)

Numerical error

Exploiting interpolation over equispaced grids...

 $G({\bm x},{\bm y})$

...we obtain a regular "cartesian" 3D grid of 3D nodes.

 $G(\mathbf{t}(\mathbf{x}) + \hat{\mathbf{x}}, \mathbf{t}(\mathbf{y}) + \hat{\mathbf{y}})$

...we obtain a regular "cartesian" 3D grid of 3D nodes.

$$G(\underbrace{t_x}_{\textit{cell}} + \hat{x}, t_y + \hat{y})$$

...we obtain a regular "cartesian" 3D grid of 3D nodes.

$$G(\mathbf{t}_{\mathbf{x}} + \underbrace{\hat{\mathbf{x}}}_{node}, \mathbf{t}_{\mathbf{y}} + \hat{\mathbf{y}})$$

Theorem^a

^aC., Claeys, Fortin, Grigori, SIAM Journal on Scientific Computing (2023)

On well-separated cells *t*, *s*, $\lim_{L \to +\infty} \left| \left| \mathcal{I}_{L}^{t \times s}[G] - G \right| \right|_{L^{\infty}(t \times s)} = 0.$

Theorem^a

^aC., Lagardère, Piquemal, JCTC (2023)

$$\mathcal{E}_{\textit{real}} = \mathcal{N} + \mathbf{v}^T \chi^* \mathbb{F}_6^* \mathbf{D} \mathbb{F}_6 \chi \mathbf{v}.$$

- 1. Build space decomposition as **perfect** 2^d -tree leaves ($\mathcal{O}(N)$)
- 2.
- 3.
 - •
- 4.

- 1. Build space decomposition as **perfect** 2^d -tree leaves $\rightarrow \mathcal{O}(N)$
- 2. Compute local problem compression $\rightarrow \mathcal{O}\left(\frac{N}{\log(N)}\right)$
- 3.
- 4

- 1. Build space decomposition as **perfect** 2^d -tree leaves $\rightarrow \mathcal{O}(N)$
- 2. Compute local problem compression $\rightarrow \mathcal{O}\left(\frac{N}{\log(N)}\right)$
- 3. Exchange compression with neighbors $\rightarrow \mathcal{O}\left(\alpha + \beta \frac{N}{\log(N)}\right)$
- 4.

- 1. Build space decomposition as **perfect** 2^d -tree leaves $\rightarrow \mathcal{O}(N)$
- 2. Compute local problem compression $\rightarrow \mathcal{O}\left(\frac{N}{\log(N)}\right)$
- 3. Exchange compression with neighbors $\rightarrow \mathcal{O}\left(\alpha + \beta \frac{N}{\log(N)}\right)$
- 4. Compute leaf far field information $\rightarrow \mathcal{O}\left(\frac{N}{\log(N)}\right)$

- 1. Build space decomposition as **perfect** 2^d -tree leaves $\rightarrow \mathcal{O}(N)$
- 2. Compute local problem compression $\rightarrow \mathcal{O}\left(\frac{N}{\log(N)}\right)$
- 3. Exchange compression with neighbors $\rightarrow \mathcal{O}\left(\alpha + \beta \frac{N}{\log(N)}\right)$
- 4. Compute leaf far field information $\rightarrow \mathcal{O}\left(\frac{N}{\log(N)}\right)$

Algorithmic in parallel

- 1. Build space decomposition as **perfect** 2^d -tree leaves $\rightarrow \mathcal{O}\left(\frac{N}{P}\right)$
- 2. Compute local problem compression $\rightarrow \mathcal{O}\left(\frac{N}{P}\right)$
- 3. Exchange compression with neighbors $\rightarrow \mathcal{O}\left(\alpha + \beta \frac{N}{P}\right)$
- 4. Compute leaf far field information $\rightarrow \mathcal{O}\left(\frac{N}{P}\right)$

Overall $\mathcal{O}\left(\alpha + \frac{N}{P}(\beta + \gamma)\right)$ (joint work with *P.* Fortin for MPI implementation)

Results

(First MPI version "soon" publicly available)

- Single CPU execution
- Tinker-hp is a reference implementation of PME
- ANKH-FFT on github: IChollet/ankh-fft

High-level formulation

Freely generated vector spaces and reformulation

If (t,s) is a well-separated pair and $(s', t') \in Sons(s) \times Sons(t)$:

 $P2P[t', s'] \approx L2P[t'] \cdot L2L[t', t] \cdot M2L[t, s] \cdot M2M[s, s'] \cdot P2M[s'] \cdot q_{|s'}.$

Freely generated vector spaces and reformulation

If (t,s) is a well-separated pair and $(s', t') \in Sons(s) \times Sons(t)$:

 $P2P[t',s'] \approx L2P[t'] \cdot L2L[t',t] \cdot M2L[t,s] \cdot M2M[s,s'] \cdot P2M[s'] \cdot q_{|s'}.$

Freely generated vector space and abstract FMM operators

 \mathcal{T} the 2^{*d*}-tree, $r_{\mathcal{T}} : \mathcal{T} \to \mathbb{N}^*$ is a rank distribution over \mathcal{T} . F.g.v.s. $\mathbb{C}[r_{\mathcal{T}}] := \prod \mathbb{C}^{r_{\mathcal{T}}(c)}$. We have $c \in \mathcal{T}$ ▶ P2M : $\mathbb{C}[Y \cap s'] \rightarrow \mathbb{C}[r_{\mathcal{T}_{[s']}}],$ ▶ M2M : $\mathbb{C}[r_{\mathcal{T}_{|s'}}] \rightarrow \mathbb{C}[r_{\mathcal{T}_{|s}}],$ ▶ M2L : $\mathbb{C}[r_{\mathcal{T}_{|s}}] \rightarrow \mathbb{C}[r_{\mathcal{T}_{|t}}],$ ▶ L2L : $\mathbb{C}[r_{\mathcal{T}_{|t}}] \rightarrow \mathbb{C}[r_{\mathcal{T}_{|t'}}],$ ▶ L2P : $\mathbb{C}[r_{\mathcal{T}_{t'}}] \rightarrow \mathbb{C}[X \cap t'],$ ▶ P2P : $\mathbb{C}[X \cap t'] \rightarrow \mathbb{C}[Y \cap s']$.

Freely generated vector spaces and reformulation

If (t,s) is a well-separated pair and $(s', t') \in Sons(s) \times Sons(t)$:

 $P2P[t',s'] \approx L2P[t'] \cdot L2L[t',t] \cdot M2L[t,s] \cdot M2M[s,s'] \cdot P2M[s'] \cdot q_{|s'}.$

Shape of FMM operators

M2L $A_{t,s}$ between well-separated t and s. $A_{t,s}$ is \mathcal{G} -invariant:

$$\forall g, h \in \mathcal{G}, A_{g \cdot t, h \cdot s} = P_g \cdot A_{t,s} \cdot P_h,$$

M2L $A_{t,s}$ between well-separated t and s. $A_{t,s}$ is \mathcal{G} -invariant:

$$\forall g, h \in \mathcal{G}, A_{g \cdot t, h \cdot s} = P_g \cdot A_{t,s} \cdot P_h,$$

M2L $A_{t,s}$ between well-separated t and s. $A_{t,s}$ is \mathcal{G} -invariant:

$$\forall g, h \in \mathcal{G}, A_{g \cdot t, h \cdot s} = P_g \cdot A_{t,s} \cdot P_h,$$

M2L $A_{t,s}$ between well-separated t and s. $A_{t,s}$ is \mathcal{G} -invariant:

$$\forall g, h \in \mathcal{G}, A_{g \cdot t, h \cdot s} = P_g \cdot A_{t,s} \cdot P_h,$$

M2L $A_{t,s}$ between well-separated t and s. $A_{t,s}$ is \mathcal{G} -invariant:

$$\forall g, h \in \mathcal{G}, A_{g \cdot t, h \cdot s} = P_g \cdot A_{t,s} \cdot P_h,$$

M2L $A_{t,s}$ between well-separated t and s. $A_{t,s}$ is \mathcal{G} -invariant:

$$\forall g, h \in \mathcal{G}, A_{g \cdot t, h \cdot s} = P_g \cdot A_{t,s} \cdot P_h,$$

 P_g (resp. P_h) representation of g (resp. h) over $\mathbb{C}[r_{\mathcal{T}|t}]$ (resp. $\mathbb{C}[r_{\mathcal{T}|s}]$).

Same hyperoctahedral symmetry than M2L set!

Two-electron integrals

Problem: Evaluate fourth-order tensor $\mathbb{H} \in \mathbb{R}^{N \times N \times N \times N}$ (bottleneck in quantum chemistry):

$$\mathbb{H}_{i,j,k,l} := \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} G(\mathbf{x}, \mathbf{y}) \mu_i(\mathbf{x}) \mu_j(\mathbf{x}) \nu_k(\mathbf{y}) \nu_l(\mathbf{y}) d\mathbf{y} d\mathbf{x}, \quad G(\mathbf{x}, \mathbf{y}) = \frac{2 \int_0^{\mu |\mathbf{x} - \mathbf{y}|} e^{-t^2} dt}{\sqrt{\pi |\mathbf{x} - \mathbf{y}|}}$$

Joint work with Siwar Baddredine and Laura Grigori

Two-electron integrals

Thank you for your attention!