ANKH: A scalable divide and conquer strategy for energy computation on modern HPC architectures

Olivier Adjoua, Igor Chollet, Louis Lagardère, Jean-Philip Piquemal Numpex 07/02/24

TinkerTools/tinkerhp

Tinker-HP: High-Performance Massively Parallel Evolution of Tinker on CPUs \& GPUs

8×5
(c) 3
Issues
今 71
ยु 20
Contributors
Stars
Forks

固IIIIII

Tinker-hp

Tinker-hp is a pre-exascale, multi-CPUs, multi-GPUs, multi-precision package dedicated to long molecular dynamics simulations with classical and polarizable force fields.

TinkerTools/tinkerhp

Tinker-HP: High-Performance Massively Parallel Evolution of Tinker on CPUs \& GPUs

```
8x 5
    Contributor:
```

(-) 3

```
Issues
```

) 71

```
5 tars
¢\% 20
Contributors
Forks
```


Tinker-hp

Tinker-hp is a pre-exascale, multi-CPUs, multi-GPUs, multi-precision package dedicated to long molecular dynamics simulations with classical and polarizable force fields.

Rely on Ewald Summation and large-scale FFTs for fast computations.

TinkerTools/tinkerhp

Tinker-HP: High-Performance Massively Parallel Evolution of Tinker on CPUs \& GPUs

```
&x (`) 3 & }71\mathrm{ &ै 20
Contributors
Stars
Forks
```


Tinker-hp

Tinker-hp is a pre-exascale, multi-CPUs, multi-GPUs, multi-precision package dedicated to long molecular dynamics simulations with classical and polarizable force fields.

Rely on Ewald Summation and large-scale FFTs for fast computations.

TinkerTools/tinkerhp

Tinker-HP: High-Performance Massively Parallel Evolution of Tinker on CPUs \& GPUs

```
&x © (-) 3 & %1 &% 20
Contributors
```

3 ฟ 71

```
Stars
Forks
```


Tinker-hp

Tinker-hp is a pre-exascale, multi-CPUs, multi-GPUs, multi-precision package dedicated to long molecular dynamics simulations with classical and polarizable force fields.

Rely on Ewald Summation and large-scale FFTs for fast computations.
Fast Multipole Methods as alternative to Ewald Summation?

TinkerTools/tinkerhp

Tinker-HP: High-Performance Massively Parallel Evolution of Tinker on CPUs \& GPUs

8×5	(-) 3	¢ 71	¢
Contributors	Issues	5 tars	

Tinker-hp

Tinker-hp is a pre-exascale, multi-CPUs, multi-GPUs, multi-precision package dedicated to long molecular dynamics simulations with classical and polarizable force fields.

Rely on Ewald Summation and large-scale FFTs for fast computations.
Fast Multipole Methods (FMM) as alternative to Ewald Summation?
\rightarrow Solve scalability in non-polarizable case, may induce errors on forces.

TinkerTools/tinkerhp

Tinker-HP: High-Performance Massively Parallel Evolution of Tinker on CPUs \& GPUs

```
&x (`) 3 & }71\mathrm{ &ै 20
Contributors
```

3 む 71

```
Stars
Forks
```


Tinker-hp

Tinker-hp is a pre-exascale, multi-CPUs, multi-GPUs, multi-precision package dedicated to long molecular dynamics simulations with classical and polarizable force fields.

Rely on Ewald Summation and large-scale FFTs for fast computations.
FMM-based Ewald Summation?

TinkerTools/tinkerhp

Tinker-HP: High-Performance Massively Parallel Evolution of Tinker on CPUs \& GPUs

8×5	(-) 3	ふ 71	δ^{6}
Contributors	issues	5 tars	

固|IIIII

Tinker-hp

Tinker-hp is a prexascale, multi-CPUs, multi-GPUs, multi-precision package dedicated to long molecular dynamics simulations with classical and polarizable force fields.

FMM-based Ewald Summation?
\rightarrow ANKH: scalable, fast, adapted to classical and polarizable force field, controlled error bounds, including GPU and CPU+GPU formulations

Task and approach

Energy calculation

$$
\mathcal{E}:=\sum_{\mathbf{t} \in 2 r_{B} \mathbb{Z}^{3}} \sum_{\mathbf{x}} \sum_{\mathbf{y}} \mathfrak{D}_{\mathbf{x}} \mathfrak{D}_{\mathbf{y}}|\mathbf{x}-\mathbf{y}+\mathbf{t}|^{-1}
$$

with r_{B} the box radius and $\mathfrak{D}_{\mathbf{x}}:=q_{\mathbf{x}}+\mu_{\mathbf{x}} \cdot \nabla_{\mathbf{x}}+\Theta_{\mathbf{x}}: \nabla^{2}$.

		$\bullet \cdot$			
			- -	$\stackrel{\bullet}{\bullet}$	

Task and approach

Energy calculation

$$
\mathcal{E}:=\sum_{\mathbf{t} \in 2 r_{B} \mathbb{Z}^{3}} \sum_{\mathbf{x}} \sum_{\mathbf{y}} \mathfrak{D}_{\mathbf{x}} \mathfrak{D}_{\mathbf{y}}|\mathbf{x}-\mathbf{y}+\mathbf{t}|^{-1}
$$

with r_{B} the box radius and $\mathfrak{D}_{\mathbf{x}}:=q_{\mathbf{x}}+\mu_{\mathbf{x}} \cdot \nabla_{\mathbf{x}}+\Theta_{\mathbf{x}}: \nabla^{2}$.

Problem: the sum over t's only conditionally converges and the convergence is very slow.

Idea: $\frac{1}{R}=\frac{\lambda(R)+1-\lambda(R)}{R} \quad$ Good choice: $\lambda(R)=\operatorname{erf}(\xi R)$

Task and approach

Energy calculation

$$
\mathcal{E}:=\sum_{\mathbf{t} \in 2 r_{\mathbb{B}} \mathbb{Z}^{3}} \sum_{\mathbf{x}} \sum_{\mathbf{y}} \mathfrak{D}_{\mathrm{x}} \mathfrak{D}_{\mathbf{y}}|\mathbf{x}-\mathbf{y}+\mathbf{t}|^{-1}
$$

with r_{B} the box radius and $\mathfrak{D}_{\mathbf{x}}:=q_{\mathbf{x}}+\mu_{\mathbf{x}} \cdot \nabla_{\mathbf{x}}+\Theta_{\mathbf{x}}: \nabla^{2}$.

Ewald summation

$$
\begin{gathered}
\mathcal{E}=\mathcal{E}_{\text {real }}+\mathcal{E}_{\text {rec }}+\mathcal{E}_{\text {self }} \\
\mathcal{E}_{\text {real }}:=\sum_{\mathbf{t}} \sum_{\mathbf{x}} \sum_{\mathbf{y}} \mathfrak{D}_{\mathbf{x}} \mathfrak{D}_{\mathbf{y}}\left(\frac{e r f c(\xi|\mathbf{x}-\mathbf{y}+\mathbf{t}|)}{|\mathbf{x}-\mathbf{y}+\mathbf{t}|}\right), \\
\mathcal{E}_{\text {rec }}:=\frac{1}{2 \pi\left(2 r_{B}\right)^{2}} \sum_{\mathbf{m} \neq 0} \frac{e^{-2\left(\frac{\pi r_{B}}{\xi}\right)^{2} \mathbf{m} \cdot \mathbf{m}}}{\mathbf{m} \cdot \mathbf{m}} S(\mathbf{m}) S(-\mathbf{m}), \\
S(\mathbf{m}):=\sum_{\mathbf{x}} e^{i \frac{\pi}{T_{B}} \mathbf{m} \cdot \mathbf{x}}\left(q_{\mathbf{x}}+2 i \pi r_{B} \mu_{\mathbf{x}} \cdot \mathbf{m}-\left(2 \pi r_{B}\right)^{2} \Theta_{\mathbf{x}}:\left(\mathbf{m} \mathbf{m}^{\top}\right)\right), \\
\mathcal{E}_{\text {self }}:=-\frac{\xi}{\sqrt{\pi}} \sum_{\mathbf{x}}\left(q_{\mathbf{x}}^{2}+\frac{2 \xi^{2}}{3} \mu_{\mathbf{x}} \cdot \mu_{\mathbf{x}}+\frac{8 \xi^{4}}{5} \Theta_{\mathbf{x}}: \Theta_{\mathbf{x}}\right) .
\end{gathered}
$$

Task and approach

Particle Mesh Ewald (PME)

Find optimal ξ, apply cutoff for $\mathcal{E}_{\text {real }}$, compute $S(\mathbf{m})$'s using interpolation and Fast Fourier Transforms.

Ewald summation

$$
\begin{gathered}
\mathcal{E}=\mathcal{E}_{\text {real }}+\mathcal{E}_{\text {rec }}+\mathcal{E}_{\text {self }} \\
\mathcal{E}_{\text {real }}:=\sum_{\mathbf{t}} \sum_{\mathbf{x}} \sum_{\mathbf{y}} \mathfrak{D}_{\mathbf{x}} \mathfrak{D}_{\mathbf{y}}\left(\frac{e r f c(\xi|\mathbf{x}-\mathbf{y}+\mathbf{t}|)}{|\mathbf{x}-\mathbf{y}+\mathbf{t}|}\right), \\
\mathcal{E}_{\text {rec }}:=\frac{1}{2 \pi\left(2 r_{B}\right)^{2}} \sum_{\mathbf{m} \neq 0} \frac{e^{-2\left(\frac{\pi r_{B}}{\xi}\right)^{2} \mathbf{m} \cdot \mathbf{m}}}{\mathbf{m} \cdot \mathbf{m}} S(\mathbf{m}) S(-\mathbf{m}), \\
S(\mathbf{m}):=\sum_{\mathbf{x}} e^{i \frac{\pi}{B} \mathbf{m} \cdot \mathbf{x}}\left(q_{\mathbf{x}}+2 i \pi r_{B} \mu_{\mathbf{x}} \cdot \mathbf{m}-\left(2 \pi r_{B}\right)^{2} \Theta_{\mathbf{x}}:\left(\mathbf{m} \mathbf{m}^{\top}\right)\right), \\
\mathcal{E}_{\text {self }}:=-\frac{\xi}{\sqrt{\pi}} \sum_{\mathbf{x}}\left(q_{\mathbf{x}}^{2}+\frac{2 \xi^{2}}{3} \mu_{\mathbf{x}} \cdot \mu_{\mathbf{x}}+\frac{8 \xi^{4}}{5} \Theta_{\mathbf{x}}: \Theta_{\mathbf{x}}\right) .
\end{gathered}
$$

Task and approach

Particle Mesh Ewald (PME)

Find optimal ξ, apply cutoff for $\mathcal{E}_{\text {real }}$, compute $S(\mathbf{m})$'s using interpolation and
Fast Fourier Transforms \rightarrow possibly "poor" scaling on distributed memory

Ewald summation

$$
\begin{gathered}
\mathcal{E}=\mathcal{E}_{\text {real }}+\mathcal{E}_{\text {rec }}+\mathcal{E}_{\text {self }} \\
\mathcal{E}_{\text {real }}:=\sum_{\mathbf{t}} \sum_{\mathbf{x}} \sum_{\mathbf{y}} \mathfrak{D}_{\mathbf{x}} \mathfrak{D}_{\mathbf{y}}\left(\frac{\text { erfc }(\xi|\mathbf{x}-\mathbf{y}+\mathbf{t}|)}{|\mathbf{x}-\mathbf{y}+\mathbf{t}|}\right), \\
\mathcal{E}_{\text {rec }}:=\frac{1}{2 \pi\left(2 r_{B}\right)^{2}} \sum_{\mathbf{m} \neq 0} \frac{e^{-2\left(\frac{\pi r_{B}}{\xi}\right)^{2} \mathbf{m} \cdot \mathbf{m}}}{\mathbf{m} \cdot \mathbf{m}} S(\mathbf{m}) S(-\mathbf{m}), \\
S(\mathbf{m}):=\sum_{\mathbf{x}} e^{i \frac{\pi}{\mathbb{R}} \mathbf{m} \cdot \mathbf{x}}\left(q_{\mathbf{x}}+2 i \pi r_{B} \mu_{\mathbf{x}} \cdot \mathbf{m}-\left(2 \pi r_{B}\right)^{2} \Theta_{\mathbf{x}}:\left(\mathbf{m m ^ { T }}\right)\right), \\
\mathcal{E}_{\text {self }}:=-\frac{\xi}{\sqrt{\pi}} \sum_{\mathbf{x}}\left(q_{\mathbf{x}}^{2}+\frac{2 \xi^{2}}{3} \mu_{\mathbf{x}} \cdot \mu_{\mathbf{x}}+\frac{8 \xi^{4}}{5} \Theta_{\mathbf{x}}: \Theta_{\mathbf{x}}\right) .
\end{gathered}
$$

Task and approach

New simple idea

Choose very small ξ (in practice, $\xi \approx 0.01$) and exploit fast hierarchical techniques for N-body problems to compute $\mathcal{E}_{\text {real }}$.

Ewald summation

$$
\begin{gathered}
\mathcal{E}=\mathcal{E}_{\text {real }}+\mathcal{E}_{\text {rec }}+\mathcal{E}_{\text {self }} \\
\mathcal{E}_{\text {real }}:=\sum_{\mathbf{t}} \sum_{\mathbf{x}} \sum_{\mathbf{y}} \mathfrak{D}_{\mathbf{x}} \mathfrak{D}_{\mathbf{y}}\left(\frac{\operatorname{erfc}(\xi|\mathbf{x}-\mathbf{y}+\mathbf{t}|)}{|\mathbf{x}-\mathbf{y}+\mathbf{t}|}\right) \\
\mathcal{E}_{\text {rec }}:=\frac{1}{2 \pi\left(2 r_{B}\right)^{2}} \sum_{\mathbf{m} \neq \mathbf{0}} \frac{e^{-2\left(\frac{\pi r_{B}}{\xi}\right)^{2} \mathbf{m} \cdot \mathbf{m}}}{\mathbf{m} \cdot \mathbf{m}} S(\mathbf{m}) S(-\mathbf{m}) \\
S(\mathbf{m}):=\sum_{\mathbf{x}} e^{i \frac{\pi}{r_{B}} \mathbf{m} \cdot \mathbf{x}}\left(q_{\mathbf{x}}+2 i \pi r_{B} \mu_{\mathbf{x}} \cdot \mathbf{m}-\left(2 \pi r_{B}\right)^{2} \Theta_{\mathbf{x}}:\left(\mathbf{m m}^{T}\right)\right) \\
\mathcal{E}_{\text {self }}:=-\frac{\xi}{\sqrt{\pi}} \sum_{\mathbf{x}}\left(q_{\mathbf{x}}^{2}+\frac{2 \xi^{2}}{3} \mu_{\mathbf{x}} \cdot \mu_{\mathbf{x}}+\frac{8 \xi^{4}}{5} \Theta_{\mathbf{x}}: \Theta_{\mathbf{x}}\right)
\end{gathered}
$$

Task and approach

New simple idea

Choose very small ξ (in practice, $\xi \approx 0.01$) and exploit fast hierarchical techniques for N-body problems to compute $\mathcal{E}_{\text {real }}$.

Ewald summation

$$
\begin{gathered}
\mathcal{E}=\mathcal{E}_{\text {real }}+\mathcal{E}_{\text {rec }}+\mathcal{E}_{\text {self }} \\
\mathcal{E}_{\text {real }}:=\sum_{\mathbf{t}<T_{\text {conv }}} \sum_{\mathbf{x}} \sum_{\mathbf{y}} \mathfrak{D}_{\mathbf{x}} \mathfrak{D}_{\mathbf{y}}\left(\frac{\operatorname{erfc}(\xi|\mathbf{x}-\mathbf{y}+\mathbf{t}|)}{|\mathbf{x}-\mathbf{y}+\mathbf{t}|}\right), \\
\mathcal{E}_{\text {rec }} \approx 0 \\
\mathcal{E}_{\text {self }}=\text { easy to compute quantity. }
\end{gathered}
$$

N-body problems

N-body problems

Notations: $\mathbb{C}[Z]$ the set of application from Z to \mathbb{C}. The cardinal of Z is denoted $\# Z . \mathbb{C}[Z]$ isomorphic to $\mathbb{C}^{\# Z}=\mathbb{C} \times \ldots \times \mathbb{C}$.

Goal: given \mathbb{X} and \mathbb{Y} two point clouds, quickly evaluate

$$
\begin{gathered}
\mathbb{G}: \mathbb{C}[\mathbb{Y}] \rightarrow \mathbb{C}[\mathbb{X}] \text { such that } \forall q \in \mathbb{C}[\mathbb{Y}] \\
(\mathbb{G} \cdot q)(\mathbf{x}):=\sum_{\mathbf{y} \in \mathbb{Y}} G(\mathbf{x}, \mathbf{y}) q(\mathbf{y}), \quad \forall \mathbf{x} \in \mathbb{X},
\end{gathered}
$$

$G: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{C}$ asymptotically smooth and singular at $\mathbf{x}=\mathbf{y}$, such as Coulomb kernel $G(\mathbf{x}, \mathbf{y}):=\frac{1}{|\mathbf{x}-\mathbf{y}|}$.

Overall idea

Overall idea

$$
j
$$

Overall idea

Overall idea

 H

 \rightarrow H $1+1$ H 4 H

Overall idea

Fast Multipole Methods

Ingredients of a FMM

Strategy:

- Introduce a hierarchical space representation (2^{d}-tree)
- Define a Multipole Acceptance Criterion
- Find way of aggregate and scatter expansions Multipole Acceptance Criterion

Gathering / scattering

Near and far field separation

Sparsity of the far field matrix

Suppose that t and s are two admissible cells. We have:

$$
\sum_{\mathbf{y} \in Y_{\mid s}} G(\mathbf{x}, \mathbf{y}) q(\mathbf{y}) \approx \sum_{k=1}^{r} S_{k}(\mathbf{x}) \sum_{l=1}^{r} G\left(\mathbf{x}_{k}, \mathbf{y}_{l}\right) \sum_{\mathbf{y} \in Y_{\mid s}} S_{l}(\mathbf{y}) q(\mathbf{y})
$$

Sparsity of the far field matrix

Suppose that t and s are two admissible cells. We have:

$$
\sum_{\mathbf{y} \in Y_{\mid s}} G(\mathbf{x}, \mathbf{y}) q(\mathbf{y}) \approx \sum_{k=1}^{r} S_{k}(\mathbf{x}) \sum_{l=1}^{r} G\left(\mathbf{x}_{k}, \mathbf{y}_{l}\right) \sum_{\mathbf{y} \in Y_{\mid s}} S_{l}(\mathbf{y}) q(\mathbf{y})
$$

ANKH

Numerical differentiation

Le H be the following asymptotically smooth kernel ${ }^{1}$

$$
H(\mathbf{x}, \mathbf{y}):=\frac{\operatorname{erfc}(\xi|\mathbf{x}-\mathbf{y}|)}{|\mathbf{x}-\mathbf{y}|}
$$

Using (Chebyshev-)Lagrange polynomial interpolation²:

$$
\begin{aligned}
\sum_{\mathbf{x} \in t} \sum_{\mathbf{y} \in s} \mathfrak{D}_{\mathbf{x}} \mathfrak{D}_{\mathbf{y}} H(\mathbf{x}, \mathbf{y}) & \approx \sum_{k} \underbrace{\left(\sum_{\mathbf{x} \in t} \mathfrak{D}_{\mathbf{x}} S_{k}[t](\mathbf{x})\right)}_{=\mathcal{Q}_{t}\left(\mathbf{x}_{k}^{t}\right)} \sum_{l} H\left(\mathbf{x}_{k}^{t}, \mathbf{y}_{l}^{s}\right) \underbrace{\left(\sum_{\mathbf{y} \in s} \mathfrak{D}_{\mathbf{y}} S_{l}[s](\mathbf{y})\right)}_{=: \mathcal{Q}_{s}\left(\mathbf{y}_{l}^{s}\right)} \\
& =\sum_{k} \mathcal{Q}_{t}\left(\mathbf{x}_{k}^{t}\right) \sum_{l} H\left(\mathbf{x}_{k}^{t}, \mathbf{y}_{l}^{s}\right) \mathcal{Q}_{s}\left(\mathbf{y}_{l}^{s}\right) .
\end{aligned}
$$

[^0]
Numerical differentiation

Le H be the following asymptotically smooth kernel ${ }^{1}$

$$
H(\mathbf{x}, \mathbf{y}):=\frac{\operatorname{erfc}(\xi|\mathbf{x}-\mathbf{y}|)}{|\mathbf{x}-\mathbf{y}|}
$$

Using (Chebyshev-)Lagrange polynomial interpolation²:

$$
\begin{aligned}
\sum_{\mathbf{x} \in t} \sum_{\mathbf{y} \in s} \mathfrak{D}_{\mathbf{x}} \mathfrak{D}_{\mathbf{y}} H(\mathbf{x}, \mathbf{y}) & \approx \sum_{k} \underbrace{\left(\sum_{\mathbf{x} \in t} \mathfrak{D}_{\mathbf{x}} S_{k}[t](\mathbf{x})\right)}_{=: \mathcal{Q}_{t}\left(\mathbf{x}_{k}^{t}\right)} \sum_{l} H\left(\mathbf{x}_{k}^{t}, \mathbf{y}_{l}^{s}\right) \underbrace{\left(\sum_{\mathbf{y} \in s} \mathfrak{D}_{\mathbf{y}} S_{l}[s](\mathbf{y})\right)}_{=: \mathcal{Q}_{s}\left(\mathbf{y}_{l}^{s}\right)} \\
& =\sum_{k} \mathcal{Q}_{t}\left(\mathbf{x}_{k}^{t}\right) \sum_{l} H\left(\mathbf{x}_{k}^{t}, \mathbf{y}_{l}^{s}\right) \mathcal{Q}_{s}\left(\mathbf{y}_{l}^{s}\right) .
\end{aligned}
$$

Problem: $S_{k}^{\prime}(x)=\frac{2}{L \sqrt{1-x^{2}}} \sum_{m=1}^{L-1} m T_{m}\left(x_{k}\right) \sin (m \operatorname{acos}(x))$, numerically unstable!

[^1]
Numerical error

Equispaced interpolation

Exploiting interpolation over equispaced grids...

$$
G(\mathbf{x}, \mathbf{y})
$$

Equispaced interpolation

...we obtain a regular "cartesian" 3D grid of 3D nodes.

$$
G(\mathbf{t}(\mathbf{x})+\hat{\mathbf{x}}, \mathbf{t}(\mathbf{y})+\hat{\mathbf{y}})
$$

Equispaced interpolation

...we obtain a regular "cartesian" 3D grid of 3D nodes.

$$
G(\underbrace{\mathbf{t}_{\mathbf{x}}}_{\text {cell }}+\hat{\mathbf{x}}, \mathbf{t}_{\mathbf{y}}+\hat{\mathbf{y}})
$$

Equispaced interpolation

...we obtain a regular "cartesian" 3D grid of 3D nodes.

$$
G(\mathbf{t}_{\mathbf{x}}+\underbrace{\hat{\mathbf{x}}}_{\text {node }}, \mathbf{t}_{\mathbf{y}}+\hat{\mathbf{y}})
$$

Equispaced interpolation

Theorem ${ }^{\text {a }}$
${ }^{\text {a }}$ C., Claeys, Fortin, Grigori, SIAM Journal on Scientific Computing (2023)
On well-separated cells $t, s, \lim _{L \rightarrow+\infty}\left\|\mathcal{I}_{L}^{t \times s}[G]-G\right\|_{L^{\infty}(t \times s)}=0$.

Theorem ${ }^{\text {a }}$

${ }^{\text {a}}$ C., Lagardère, Piquemal, JCTC (2023)

$$
\mathcal{E}_{\text {real }}=\mathcal{N}+\mathbf{v}^{\top} \chi^{*} \mathbb{F}_{6}^{*} \mathbf{D} \mathbb{F}_{6} \chi \mathbf{v} .
$$

Divide-and-conquer strategy

Algorithmic

1. Build space decomposition as perfect 2^{d}-tree leaves $(\mathcal{O}(N))$
2.
3.
4.

Divide-and-conquer strategy

Algorithmic

1. Build space decomposition as perfect 2^{d}-tree leaves $\rightarrow \mathcal{O}(N)$
2. Compute local problem compression $\rightarrow \mathcal{O}\left(\frac{N}{\log (N)}\right)$ 3.
3.

Divide-and-conquer strategy

Algorithmic

1. Build space decomposition as perfect 2^{d}-tree leaves $\rightarrow \mathcal{O}(N)$
2. Compute local problem compression $\rightarrow \mathcal{O}\left(\frac{N}{\log (N)}\right)$
3. Exchange compression with neighbors $\rightarrow \mathcal{O}\left(\alpha+\beta \frac{N}{\log (N)}\right)$ 4.

Divide-and-conquer strategy

Algorithmic

1. Build space decomposition as perfect 2^{d}-tree leaves $\rightarrow \mathcal{O}(N)$
2. Compute local problem compression $\rightarrow \mathcal{O}\left(\frac{N}{\log (N)}\right)$
3. Exchange compression with neighbors $\rightarrow \mathcal{O}\left(\alpha+\beta \frac{N}{\log (N)}\right)$
4. Compute leaf far field information $\rightarrow \mathcal{O}\left(\frac{N}{\log (N)}\right)$

Divide-and-conquer strategy

Algorithmic

1. Build space decomposition as perfect 2^{d}-tree leaves $\rightarrow \mathcal{O}(N)$
2. Compute local problem compression $\rightarrow \mathcal{O}\left(\frac{N}{\log (N)}\right)$
3. Exchange compression with neighbors $\rightarrow \mathcal{O}\left(\alpha+\beta \frac{N}{\log (N)}\right)$
4. Compute leaf far field information $\rightarrow \mathcal{O}\left(\frac{N}{\log (N)}\right)$

Divide-and-conquer strategy

Algorithmic in parallel

1. Build space decomposition as perfect 2^{d}-tree leaves $\rightarrow \mathcal{O}\left(\frac{N}{P}\right)$
2. Compute local problem compression $\rightarrow \mathcal{O}\left(\frac{N}{P}\right)$
3. Exchange compression with neighbors $\rightarrow \mathcal{O}\left(\alpha+\beta \frac{N}{P}\right)$
4. Compute leaf far field information $\rightarrow \mathcal{O}\left(\frac{N}{P}\right)$

Overall $\mathcal{O}\left(\alpha+\frac{N}{P}(\beta+\gamma)\right)$ (joint work with P. Fortin for MPI implementation)

Results

(First MPI version "soon" publicly available)

- Single CPU execution
- Tinker-hp is a reference implementation of PME
- ANKH-FFT on github: IChollet/ankh-fft

High-level formulation

Freely generated vector spaces and reformulation

If (t, s) is a well-separated pair and $\left(s^{\prime}, t^{\prime}\right) \in \operatorname{Sons}(s) \times \operatorname{Sons}(t)$:

$$
P 2 P\left[t^{\prime}, s^{\prime}\right] \approx L 2 P\left[t^{\prime}\right] \cdot L 2 L\left[t^{\prime}, t\right] \cdot M 2 L[t, s] \cdot M 2 M\left[s, s^{\prime}\right] \cdot P 2 M\left[s^{\prime}\right] \cdot q_{\left[s^{\prime}\right.} .
$$

Freely generated vector spaces and reformulation

If (t, s) is a well-separated pair and $\left(s^{\prime}, t^{\prime}\right) \in \operatorname{Sons}(s) \times \operatorname{Sons}(t)$:

$$
P 2 P\left[t^{\prime}, s^{\prime}\right] \approx L 2 P\left[t^{\prime}\right] \cdot L 2 L\left[t^{\prime}, t\right] \cdot M 2 L[t, s] \cdot M 2 M\left[s, s^{\prime}\right] \cdot P 2 M\left[s^{\prime}\right] \cdot q_{\mid s^{\prime}}
$$

Freely generated vector space and abstract FMM operators
\mathcal{T} the 2^{d}-tree, $r_{\mathcal{T}}: \mathcal{T} \rightarrow \mathbb{N}^{*}$ is a rank distribution over \mathcal{T}.
F.g.v.s. $\mathbb{C}\left[r_{\mathcal{T}}\right]:=\prod_{c \in \mathcal{T}} \mathbb{C}^{r_{\mathcal{T}}(c)}$. We have
$\Rightarrow \mathrm{P} 2 \mathrm{M}: \mathbb{C}\left[Y \cap s^{\prime}\right] \rightarrow \mathbb{C}\left[r_{1 \mid s^{\prime}}\right]$,

- M2M : $\mathbb{C}\left[r_{\mathcal{T}_{\mid s^{\prime}}}\right] \rightarrow \mathbb{C}\left[r_{\mathcal{T}_{\mid s}}\right]$,
- M2L: $\mathbb{C}\left[r_{\mathcal{T}_{\mid s}}\right] \rightarrow \mathbb{C}\left[r_{\mathcal{T}_{\mid t}}\right]$,
$\rightarrow \mathrm{L} 2 \mathrm{~L}: \mathbb{C}\left[r_{\mathcal{T}_{\mid t}}\right] \rightarrow \mathbb{C}\left[r_{\mathcal{T}_{\mid t^{\prime}}}\right]$,
- L2P: $\mathbb{C}\left[r_{\tau_{\mid t^{\prime}}}\right] \rightarrow \mathbb{C}\left[X \cap t^{\prime}\right]$,
- P2P: $\mathbb{C}\left[X \cap t^{\prime}\right] \rightarrow \mathbb{C}\left[Y \cap s^{\prime}\right]$.

Freely generated vector spaces and reformulation

If (t, s) is a well-separated pair and $\left(s^{\prime}, t^{\prime}\right) \in \operatorname{Sons}(s) \times \operatorname{Sons}(t)$:

$$
P 2 P\left[t^{\prime}, s^{\prime}\right] \approx L 2 P\left[t^{\prime}\right] \cdot L 2 L\left[t^{\prime}, t\right] \cdot M 2 L[t, s] \cdot M 2 M\left[s, s^{\prime}\right] \cdot P 2 M\left[s^{\prime}\right] \cdot q_{\mid s^{\prime}}
$$

M2L symmetries

M2L $A_{t, s}$ between well-separated t and s. $A_{t, s}$ is \mathcal{G}-invariant:

$$
\forall g, h \in \mathcal{G}, A_{g \cdot t, h \cdot s}=P_{g} \cdot A_{t, s} \cdot P_{h},
$$

P_{g} (resp. P_{h}) representation of $g\left(\right.$ resp. h) over $\mathbb{C}\left[r_{\mathcal{T} \mid t}\right]$ (resp. $\mathbb{C}\left[r_{\mathcal{T} \mid s}\right]$).

M2L symmetries

M2L $A_{t, s}$ between well-separated t and s. $A_{t, s}$ is \mathcal{G}-invariant:

$$
\forall g, h \in \mathcal{G}, A_{g \cdot t, h \cdot s}=P_{g} \cdot A_{t, s} \cdot P_{h},
$$

P_{g} (resp. P_{h}) representation of g (resp. h) over $\mathbb{C}\left[r_{\mathcal{T} \mid t}\right]$ (resp. $\mathbb{C}\left[r_{\mathcal{T} \mid s}\right]$).

M2L symmetries

M2L $A_{t, s}$ between well-separated t and $s . A_{t, s}$ is \mathcal{G}-invariant:

$$
\forall g, h \in \mathcal{G}, A_{g \cdot t, h \cdot s}=P_{g} \cdot A_{t, s} \cdot P_{h},
$$

P_{g} (resp. P_{h}) representation of $g\left(\right.$ resp. h) over $\mathbb{C}\left[r_{\mathcal{T} \mid t}\right]$ (resp. $\mathbb{C}\left[r_{\mathcal{T} \mid s}\right]$).

M2L symmetries

M2L $A_{t, s}$ between well-separated t and $s . A_{t, s}$ is \mathcal{G}-invariant:

$$
\forall g, h \in \mathcal{G}, A_{g \cdot t, h \cdot s}=P_{g} \cdot A_{t, s} \cdot P_{h},
$$

$P_{g}\left(\right.$ resp. $\left.P_{h}\right)$ representation of $g\left(\right.$ resp. h) over $\mathbb{C}\left[r_{\mathcal{T} \mid t}\right]$ (resp. $\mathbb{C}\left[r_{\mathcal{T} \mid s}\right]$).

M2L symmetries

M2L $A_{t, s}$ between well-separated t and $s . A_{t, s}$ is \mathcal{G}-invariant:

$$
\forall g, h \in \mathcal{G}, A_{g \cdot t, h \cdot s}=P_{g} \cdot A_{t, s} \cdot P_{h},
$$

$P_{g}\left(\right.$ resp. $\left.P_{h}\right)$ representation of $g\left(\right.$ resp. h) over $\mathbb{C}\left[r_{\mathcal{T} \mid t}\right]$ (resp. $\mathbb{C}\left[r_{\mathcal{T} \mid s}\right]$).

1								\prime
				A	1			

M2L symmetries

M2L $A_{t, s}$ between well-separated t and $s . A_{t, s}$ is \mathcal{G}-invariant:

$$
\forall g, h \in \mathcal{G}, A_{g \cdot t, h \cdot s}=P_{g} \cdot A_{t, s} \cdot P_{h},
$$

$P_{g}\left(\right.$ resp. $\left.P_{h}\right)$ representation of $g\left(\right.$ resp. h) over $\mathbb{C}\left[r_{\mathcal{T} \mid t}\right]$ (resp. $\left.\mathbb{C}\left[r_{\mathcal{T} \mid s}\right]\right)$.

Same hyperoctahedral symmetry than M2L set!

Two-electron integrals

Problem: Evaluate fourth-order tensor $\mathbb{H} \in \mathbb{R}^{N \times N \times N \times N}$ (bottleneck in quantum chemistry):
$\mathbb{H}_{i, j, k, l}:=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} G(\mathbf{x}, \mathbf{y}) \mu_{i}(\mathbf{x}) \mu_{j}(\mathbf{x}) \nu_{k}(\mathbf{y}) \nu_{l}(\mathbf{y}) d \mathbf{y} d \mathbf{x}, \quad G(\mathbf{x}, \mathbf{y})=\frac{2 \int_{0}^{\mu|\mathbf{x}-\mathbf{y}|} e^{-t^{2}} d t}{\sqrt{\pi}|\mathbf{x}-\mathbf{y}|}$.

Joint work with Siwar Baddredine and Laura Grigori

Two-electron integrals

Thank you for your attention!

[^0]: ${ }^{1}$ Badreddine, C., Grigori, Journal of Computational Physics (2023)
 ${ }^{2}$ C., Lagardère, Piquemal, Journal of Chemical Theory and Computation (2023)

[^1]: ${ }^{1}$ Badreddine, C., Grigori, Journal of Computational Physics (2023)
 ${ }^{2}$ C., Lagardère, Piquemal, Journal of Chemical Theory and Computation (2023)

