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Exascale multiphysics simulator platform for CO2 
sequestration and monitoring 



1/ Context

2/ Challenges

3/ Algorithm motifs related to the project



The role of CCUS in climate change mitigation
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Source: The Emissions Gap Report 2017. United Nations Environment Programme (UNEP)

Mitigating emissions
- Hydrocarbon-free energy 
- Operational efficiency
- CCUS on industrial sources

Residual emissions

20 Gt CO2
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Preserving the integrity of the injection site is a priority issue
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6 Monitoring system (DAS)

Modeling and simulation challenges

Flow, geo-mechanics, gravimetry, …

…and seismic modelling/inverse problem

Essential for demonstrating safety and perennity

Monitoring acquisition technology is evolving (DAS)

Large Scale: 98% storage in Aquifer

Long Term Simulation: post injection matters

Solutions:

 Scalable algorithms (exascale)

 Seismic methods coupled w/ CO2 injection 
simulation.

 Perennial: portability



GEOS:Next-gen simulation for geologic carbon storage

Key dates:

2018: FC-MAELSTROM: a 5 years project  in collaboration with 
Lawrence Livermore National Laboratory, Stanford University, and 
TotalEnergies.

2020: GEOS is released as an open-source Multiphysics simulation 
platform

2022:  a 4 years TotalEnergies and Inria joint team   to extend GEOS 
Multiphysics to geophysics monitoring: MAKUTU project

Feb 2022: FC-MAELSTROM2 a 5 years extension of FC-MAELSTROM 
project with Chevron as new member.



GEOS:Next-gen simulation for geologic carbon storage

• Multi-physics, multi-scale (Flow, geomechanics, fractures, …) 

• Open-source and auditable

• Flexibility to develop workflows via PyGEOS

• State-of-the-art programming model 

 Targets exascale platforms

fully-coupled  simulations of CO2 storage 



Makutu: Extend GEOS to seismic for CO2 monitoring

From Kyushu University

Develop workflows for CO2 monitoring

Develop highly optimized wave equations  kernels  

CO2

De-risk CO2 injection: monitor plumes/leaks

Modelize monitoring of long-term integrity of CO2

reservoir/seal

• Take advantage of long partnership with Inria in the development  
Numerical methods for waves in complex media

• Take advantage of GEOS software architecture and programming 
model 



Enriching GEOS kernels with elastodynamics

Base wave propagation kernels: 

 Acoustic /elastic, 1st and 2nd order

 Gauss-Lobatto Spectral Element approach

 DAS acquisition 

Up to 5th order in space:

 Full use of GEOS solver kernel structure

Take Advantage of in house GPUs cluster (thanks to RAJA)

Short-term:

 SEM VTI Anisotropic

 SEM Elastico-Acoustic

Mid-term:

 Discontinuous Galerkin and mixed formulations

 Pure SEM CG/DG

 Hex-dominant SEM + DG

Init. time Run time Total time

187s 1430s 1617s

4s 26s 32s

Q1: 1M cells Q3: 125k cellsQ1: 125k cells



Performance optimization
Initialization

 Mesh pre-processing & parallel mesh loading

 Optimization of geometric map construction

Kernel

 Single precision (32 bits)

 Remove unnecessary precalcs on GPU

 Optimized SEM formulation O(p9) O(p5)

GPU Memory footprint reduction

 Precalcs on CPU

 Optimized storage / on the fly computation

I/O
 LIFO asynchronous implementation

MPI

 Low-level optimization of pack/unpack (MPI)

SEG3D: 95M mesh elements

Memory

host device Run time Total time

15.8GB 3.4GB 46.5s 147s

15.8GB 0.58GB 46.5s 154s

Time

GPU memory reduction factor: 6

Init. time Run time Total time

697s 79s 778s

78s 37s 116s

Q1, 18MPI/18GPUs, total speedup: 7



Develop advanced workflows  PyGEOS

Appeal to practitioners

 Unlock powerful, complex, domain-specific

workflows

 Flexibility to integrate different libraries: 

Optimization, ML,….

Status

 Extension of PyGEOS wrappers

Makutu library with utility python classes

 Basic applications

 acquisition management, propagation, FWI

 Developing more complex workflows

 Coupled reservoir + 4D seismic
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Init & 
import

Wrap & 
access

Mix 
Python 

& GEOS



Develop Multiphysics coupled workflows

Common 
model

Single 
python 
script, 
GEOS

Using in-house  RPC
client-server library



Algorithm motifs related to the project
• Mesh generation 

- Optimized hex-meshes, and hex-dominant meshes for wave propagation,

- Adaptive Mesh refinement ( AMR) for fluid simulation (optional).

• Performance optimization:
- Optimized tensor operations for SEM-CG, SEM-CD-DG,

- Parallel programming model including task programming, explicit data distribution, multithreading and SIMT, 

- Sub-domain decomposition,

- Efficient asynchronous  IO including data compression capabilities for store/read wavefields used for Full Wave Inversion 
(FWI).

• Improve workflows with Machine learning: 
- Non repeatability of seismic acquisition, 

- Direct inversion of CO2 plume from 4D effects, 

- Improving FWI convergence…

Part of Makutu work program



Mesh optimization

Discretization methods  rely on fully unstructured meshes:
• Hexahedra:  SEM wave equation, Geomechanics
• Tetrahedra: compositional flows
• Hex-dominant : 

• A mix of hexahedra, tetrahedra, prisms, pyramids,
• Compositional flows-Geomechanics, SEM-DG wave equation

Mesh optimization for wave propagation:
• Respects seismic source wavelength, medium velocity 

properties for a given numerical approximation accuracy,
• Mesh extraction to take care of limited aperture,
• Automatic remeshing ( FWI workflow).

Adaptive Mesh refinement for compositional flows



Performance optimization

Development of advanced numerical approximation for solving wave equation:
• Hex-SEM-CG, Hex-SEM-CG-DG, HexDom-SEM-CG-DG,
• Optimized tensor operators to speed up performances of WE solvers,
Development of highly optimized  low level discretization function would contribute to improve 
performances. 

Parallel programming:
• Several level of parallelism:

• Explicit data distribution: MPI, sub-domain decomposition.
• Multithread @ host level: RAJA
• SIMT @device level: RAJA

• Task parallelism: solvers scheduling  and shot profile distribution
 Explore  task programming model  @ all levels.

Efficient  IO:
• LIFO implementation and HDF5 format already implemented
 Explore different IO strategies taking into account different storage hierarchies andvery large number of IO 
requests



Example: Time lapse gravimetry coupled with simulation and 
machine learning applied to the prediction of the evolution of the 
CO2 plume

From Bertrand Denel, bertrand.denel@totalenergies.com

Improve workflows with Machine learning

Machine learning, easily accessible through the 
natural python interface.

Implement advanced workflows: 

• Acquisition repetability

• Direct CO2 plume Inversion
• Improve reservoir properties
• Improve FWI process
• Reduce order modeling
• Speedup performances….



Conclusions and perspectives
• CCUS scale by 2050

• Multiphysics modeling/simulation beyond traditional 

• GEOS: Next-gen simulation for geologic carbon storage and

… geophysical monitoring

• Makutu: bridge between reservoir simulation and seismic imaging

• Discontinuous Galerkin approaches in GEOS
• Objective: shared multi-physics model

• DAS seismic inversion

• Validation on real/representative applications
• Coupled simulations, (reservoir, geomechanics, gravity)

• Machine Learning workflows
• Reduced order modeling , direct plume inversion

• GEOS infrastructure contributions

Perspectives

https://github.com/GEOS-DEV/GEOS/

https://github.com/GEOS-DEV/makutu/


