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Structure of the Earth
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Polarity reversals of Earth’s magnetic field

From Landeau+ 2022, Nature Review Earth & Environment
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Scientific questions

Earth’s magnetic field is generated in its liquid core by a dynamo effect (= self-induction of a magnetic
field).

Main questions:
▶ Magnetic field reversals?
▶ Role of turbulence?

Difficulties:
▶ Broad range of length-scales (from 1 to 106 meters)
▶ Broad range of time-scales (from 1 day to million years)
▶ Turbulent motion (very high Reynolds number Re ≳ 108).
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Basic rotating MHD in planetary cores

Navier-Stokes equation

∂tu+ (2/E ez +∇× u)× u = −∇p +∆u + (∇× b)× b − Ra/Pr T r⃗

Induction equation

∂tb = ∇× (u× b) + 1/Pm∆b

Temperature equation

∂tT + u.∇T = 1/Pr ∆T

E = ν/D2Ω ∼ 10−15

Pm = νµ0σ ∼ 10−5
Ra = ∆TαgD3/κν ≫ 1

Pr = ν/κ ∼ 1
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the XSHELLS code: resistive MHD in the sphere

A high performance simulation code for rotating incompressible flows and magnetic fields in spherical
shells.

Written in C++

Free & Open-source software https://nschaeff.bitbucket.io/xshells

Dependencies: FFTW (or MKL) and SHTns

Parallelization: domain decomposition with MPI + OpenMP.

Works well on GPU (cuda/hip).

Experimental mixed-precision mode on GPU.

XSHELLS code is freely available https://gricad-gitlab.univ-grenoble-alpes.fr/schaeffn/xshells

H. Frezat, N. Schaeffer (ChEESE2 ) Earth’s core simulations NumPex 8 Nov. 2023 6 / 13

https://nschaeff.bitbucket.io/xshells
https://gricad-gitlab.univ-grenoble-alpes.fr/schaeffn/xshells


Spatial discretization (1)

Vector fields are divergenceless: use two scalar representation (Poloidal/Toroidal):

u = ∇× (T r) +∇×∇× (Pr)

▶ reduce the number of degrees of freedom (memory footprint and bandwidth);
▶ ensures incompressibility;
▶ ensures magnetic field is divergenceless.
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Spatial discretization (2)

Scalars are decomposed into spherical harmonics:

S(r , θ, ϕ) =
∑
ℓ

∑
m≤ℓ

sℓ,m(r)Yℓ,m(θ, ϕ)

▶ pros of spectral method: good accuracy with reduced degrees of freedom;
▶ allows to write a local boundary condition for magnetic field matching a potential field;
▶ no obvious domain decomposition for parallelization;
▶ no ”fast” algorithm in practices, but efficient implementation
▶ diagonlizes Laplace operator (diffusive terms)

Algorithmic Motif AM1: spherical harmonic transform already highly optimized in SHTns library
(vectorized CPU and CUDA/HIP).
Possible improvement: distribute SHTs accross multiple GPUs (MPI and/or NCCL).
https://gricad-gitlab.univ-grenoble-alpes.fr/schaeffn/shtns
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Spatial discretization (3)

Use finite differences in radial direction:
▶ local formulation: easy domain decomposition;
▶ fast solves (Thomas algorithm for banded matrices)

Combination of spherical harmonics and finite differences
leads to a large collection of independent linear solves,
with many rhs.

▶ straightforward parallelization;
▶ software pipelining to reduce latency.
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Algorithmic Motif AM2: collection of banded matrix solves
Possible improvements:

using SPIKE solver (distributed)

using local transpose (e.g. whithin node).
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Time discretization

Implcit-Excplicit (IMEX) time stepping

Diffusion treated implicitily (important because of thin diffusive dboundary layers)

Other terms treated explicitly

Experimental: explicit terms can be computed using single precision on GPU (mixed-precision
mode)

Several efficient time-stepping schemes, with automatic time-step adjustment:

IMEX Backwards Difference Formula (BDF), order 2 or 3

Crank-Nicolson (implicit) Adams-Bashforth (explicit), order 2

special Predictor-Corrector, order 2, highly stable

Some Additive Runge-Kutta (namely BPR353, order 3, good stability)
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Current performance
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Current energy performance
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State of the art simulation (DNS) and Objective

2017 : Schaeffer et. al.

2688 x 1504 x 1280

E = 10−7, Re=5000, Pm=0.1

many emergent Earth-like features

short time-span (5% of magnetic diffusion time)

Objective O1: comparable parameters, but x100 to x1000 time-span to study reversals

single-node optimizations: not much left, close to memory bandwidth limit.

parallelization: some room to improve scalability (SPIKE solver, better domain decomposition, ...)

We need subgrid-scale modelling!
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Workshop Efficient discretisation for PDE@Exascale

Accelerating simulations and reaching higher resolutions

Direct numerical simulation (DNS):

∂y

∂t
= f(y)

NDNS

Grids on domain length L and corresponding energy spectrum.

Hardware and optimizations:

Exascale computing.

Hybrid GPU architectures.
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Typically using a filter.

∂ȳ
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Workshop Efficient discretisation for PDE@Exascale

State of the art: historical

”Historical” – or physical turbu-
lence models (Sagaut, 2006):

Mathematical developments

(Clark et al., 1979): Structural.

Structural

Stability -

Forward +

Backward +

Potential difficulties:

Accumulation of small-scale energy: numerical

instabilities.

Incorrect representation of the unresolved dy-

namics.

Difficulties in SGS modeling for two-dimensional turbulent systems. 2
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Workshop Efficient discretisation for PDE@Exascale

State of the art: machine learning

Current models:

Exclusive on stability and correct trans-

fers.

Machine learning as an alternative (Brun-

ton et al., 2020).

Solving a problem from data:

Inputs ȳ.

Output τ .

Model M : ȳ → τ .

”Static”.

Initial experiments on two-dimensional turbulence (Maulik et
al., 2019).

Structural Functional ML

Stability - + -

Forward + - ++

Backward + - ++
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Workshop Efficient discretisation for PDE@Exascale

Turbulence evaluation metrics

a priori metrics

Prediction of the missing term on a fixed

time-step.

Instantaneous subgrid contribution.

a posteriori metrics

Prediction of the simulation’s trajectory over

a temporal horizon.
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Workshop Efficient discretisation for PDE@Exascale

a priori learning

Instantaneous loss computation.

Instantaneous (classical) loss

L :=
〈
ℓ(M(ψ̄, ω̄), τω)

〉
x

Optimize only on the next temporal in-

crement t+∆t.

Not perfect: errors can either lead to

stable or unstable predictions.

Examples:

ℓ : = (M(ψ̄, ω̄)− τω)
2

...

ℓ : = τω(log τω −M(ψ̄, ω̄))
5



Workshop Efficient discretisation for PDE@Exascale

a posteriori learning

a posteriori loss

L := ⟨ℓ(ȳpred(t),y(t))⟩x,t
ȳpred ≡ {ω̄pred,M}

y ≡ {ω, τω}

Temporal component in

loss function.

Required to form a con-

tinuous trajectory.

Integrate during training:

solver performance is

important.

Visual sketch of an a posteriori training on one trajectory.
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Workshop Efficient discretisation for PDE@Exascale

Numerical experiments: forced turbulence

Forced turbulence (Graham et al., 2013)
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Workshop Efficient discretisation for PDE@Exascale

The differentiability requirement

Loss function minimization using gradient
descent (classical for NNs).

Gradient-based mathematical

optimization:

M(y | θ) : argmin
θ

L

⇓
θn+1 = θn − γ∇θL

a priori vs a posteriori : losses
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Workshop Efficient discretisation for PDE@Exascale

The differentiability requirement

a priori loss gradient:

∇θℓprio(M, τω)

=
∂ℓprio
∂τω

∂τω
∂θ

+
∂ℓprio
∂M

∂M
∂θ

=
∂ℓprio
∂M

∂M
∂θ︸︷︷︸
AD

a posteriori loss gradient:

∇θℓpost(ȳpred(t),y(t))

=
∂ℓpost
∂y

∂y

∂θ
+
∂ℓpost
∂ȳpred

∂ȳpred

∂θ

=
∂ℓpost
∂ȳpred

∫ t

t0

∂ solver

∂θ
+
∂M
∂θ︸︷︷︸
AD

dt′



a priori vs a posteriori : losses
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Workshop Efficient discretisation for PDE@Exascale

Technical alternatives

Gradient of the solver w.r.t. model pa-
rameters:

Estimates using numerical derivatives.

Manually implement adjoint.

Re-implementation using auto-

differentiation languages or libraries.

Deep Differentiable Emulators (Frezat

et al., 2023, Nonnenmacher and Green-

berg, 2021)

a posteriori loss gradient:

∂ℓpost
∂ȳpred

∫ t

t0

∂ solver

∂θ︸ ︷︷ ︸
Not available

+
∂M
∂θ︸︷︷︸
AD

dt′



Differentiable programming libraries in Julia
and Python.

9



Workshop Efficient discretisation for PDE@Exascale

Technical alternatives

Gradient of the solver w.r.t. model pa-
rameters:

Estimates using numerical derivatives.

Manually implement adjoint.

Re-implementation using auto-

differentiation languages or libraries.

Deep Differentiable Emulators (Frezat

et al., 2023, Nonnenmacher and Green-

berg, 2021)

a posteriori loss gradient:

∂ℓpost
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Differentiable programming libraries in Julia
and Python.
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Workshop Efficient discretisation for PDE@Exascale

Building efficient solvers with JAX

”High-performance numerical comput-
ing and large-scale machine learning re-
search”

.grad(): Computes the gradient of the

function w.r.t. any parameters (auto

differentiation).

.jit(): Compiles and optimizes on the

fly for different architectures.

.pmap(): Parallelize over many GPUs /

CPU nodes.

Writing vectorized code.

Lacking important scientific algorithms

(sparses solvers for e.g.).

A 2d convection code in an annulus geometry
built with JAX in 100-200 LoC, benchmark
TBD.
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Workshop Efficient discretisation for PDE@Exascale

Objectives

O0. Running dynamo simulation at Re = 5000 for multiple viscous time.

O1. Provide banded solvers with their adjoint for GPUs (and/or JAX)

O2. Optional: couple trained model in Python with high performance solver

O3. Questions ?
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