
Machine learning of subgrid-scale contribution to the Earth dynamo

Hugo Frezat (IPGP), Nathanaël Schaeffer (ISTerre), Alexandre Fournier (IPGP), Thomas Gastine
(IPGP)

ChEESE2 CoE

Numpex, Saclay, 8 November 2023

H. Frezat, N. Schaeffer (ChEESE2 ) Earth’s core simulations NumPex 8 Nov. 2023 1 / 13



Structure of the Earth

H. Frezat, N. Schaeffer (ChEESE2 ) Earth’s core simulations NumPex 8 Nov. 2023 2 / 13



Polarity reversals of Earth’s magnetic field

From Landeau+ 2022, Nature Review Earth & Environment
H. Frezat, N. Schaeffer (ChEESE2 ) Earth’s core simulations NumPex 8 Nov. 2023 3 / 13



Scientific questions

Earth’s magnetic field is generated in its liquid core by a dynamo effect (= self-induction of a magnetic
field).

Main questions:
▶ Magnetic field reversals?
▶ Role of turbulence?

Difficulties:
▶ Broad range of length-scales (from 1 to 106 meters)
▶ Broad range of time-scales (from 1 day to million years)
▶ Turbulent motion (very high Reynolds number Re ≳ 108).

H. Frezat, N. Schaeffer (ChEESE2 ) Earth’s core simulations NumPex 8 Nov. 2023 4 / 13



Basic rotating MHD in planetary cores

Navier-Stokes equation

∂tu+ (2/E ez +∇× u)× u = −∇p +∆u + (∇× b)× b − Ra/Pr T r⃗

Induction equation

∂tb = ∇× (u× b) + 1/Pm∆b

Temperature equation

∂tT + u.∇T = 1/Pr ∆T

E = ν/D2Ω ∼ 10−15

Pm = νµ0σ ∼ 10−5
Ra = ∆TαgD3/κν ≫ 1

Pr = ν/κ ∼ 1

H. Frezat, N. Schaeffer (ChEESE2 ) Earth’s core simulations NumPex 8 Nov. 2023 5 / 13



the XSHELLS code: resistive MHD in the sphere

A high performance simulation code for rotating incompressible flows and magnetic fields in spherical
shells.

Written in C++

Free & Open-source software https://nschaeff.bitbucket.io/xshells

Dependencies: FFTW (or MKL) and SHTns

Parallelization: domain decomposition with MPI + OpenMP.

Works well on GPU (cuda/hip).

Experimental mixed-precision mode on GPU.

XSHELLS code is freely available https://gricad-gitlab.univ-grenoble-alpes.fr/schaeffn/xshells

H. Frezat, N. Schaeffer (ChEESE2 ) Earth’s core simulations NumPex 8 Nov. 2023 6 / 13

https://nschaeff.bitbucket.io/xshells
https://gricad-gitlab.univ-grenoble-alpes.fr/schaeffn/xshells


Spatial discretization (1)

Vector fields are divergenceless: use two scalar representation (Poloidal/Toroidal):

u = ∇× (T r) +∇×∇× (Pr)

▶ reduce the number of degrees of freedom (memory footprint and bandwidth);
▶ ensures incompressibility;
▶ ensures magnetic field is divergenceless.

H. Frezat, N. Schaeffer (ChEESE2 ) Earth’s core simulations NumPex 8 Nov. 2023 7 / 13



Spatial discretization (2)

Scalars are decomposed into spherical harmonics:

S(r , θ, ϕ) =
∑
ℓ

∑
m≤ℓ

sℓ,m(r)Yℓ,m(θ, ϕ)

▶ pros of spectral method: good accuracy with reduced degrees of freedom;
▶ allows to write a local boundary condition for magnetic field matching a potential field;
▶ no obvious domain decomposition for parallelization;
▶ no ”fast” algorithm in practices, but efficient implementation
▶ diagonlizes Laplace operator (diffusive terms)

Algorithmic Motif AM1: spherical harmonic transform already highly optimized in SHTns library
(vectorized CPU and CUDA/HIP).
Possible improvement: distribute SHTs accross multiple GPUs (MPI and/or NCCL).
https://gricad-gitlab.univ-grenoble-alpes.fr/schaeffn/shtns

H. Frezat, N. Schaeffer (ChEESE2 ) Earth’s core simulations NumPex 8 Nov. 2023 8 / 13

https://gricad-gitlab.univ-grenoble-alpes.fr/schaeffn/shtns


Spatial discretization (3)

Use finite differences in radial direction:
▶ local formulation: easy domain decomposition;
▶ fast solves (Thomas algorithm for banded matrices)

Combination of spherical harmonics and finite differences
leads to a large collection of independent linear solves,
with many rhs.

▶ straightforward parallelization;
▶ software pipelining to reduce latency.

t

t

rank k

rank k+1

rank k+2

rank k

rank k+1

rank k+2

compute

compute

compute

xfer

xfer

Algorithmic Motif AM2: collection of banded matrix solves
Possible improvements:

using SPIKE solver (distributed)

using local transpose (e.g. whithin node).

H. Frezat, N. Schaeffer (ChEESE2 ) Earth’s core simulations NumPex 8 Nov. 2023 9 / 13



Time discretization

Implcit-Excplicit (IMEX) time stepping

Diffusion treated implicitily (important because of thin diffusive dboundary layers)

Other terms treated explicitly

Experimental: explicit terms can be computed using single precision on GPU (mixed-precision
mode)

Several efficient time-stepping schemes, with automatic time-step adjustment:

IMEX Backwards Difference Formula (BDF), order 2 or 3

Crank-Nicolson (implicit) Adams-Bashforth (explicit), order 2

special Predictor-Corrector, order 2, highly stable

Some Additive Runge-Kutta (namely BPR353, order 3, good stability)

H. Frezat, N. Schaeffer (ChEESE2 ) Earth’s core simulations NumPex 8 Nov. 2023 10 / 13



Current performance

100 101 102

node count

10 2

10 1

100

tim
e 

fo
r 1

 it
er

at
io

n 
(s

ec
on

ds
)

XSHELLS (NR=512, Lmax=426)
VEGA GPU nodes (4 A100) - FP64
VEGA GPU nodes (4 A100) - FP32
Adastra GPU nodes (8 MI250X) - FP64
Adastra GPU nodes (8 MI250X) - FP32
Jean-Zay CPU nodes (40 avx512 cores)
Irene-amd CPU nodes (128 avx2 cores)
single A100 GPU (40Gb)

H. Frezat, N. Schaeffer (ChEESE2 ) Earth’s core simulations NumPex 8 Nov. 2023 11 / 13



Current energy performance

0 200 400 600 800 1000 1200 1400 1600 1800
energy consumed for 1 iteration (Joules)

10 1

100

tim
e 

fo
r 1

 it
er

at
io

n 
(s

ec
on

ds
)

1

2
4

8
16

1

2
4

8
16

1

2

4
8

1

2

4

8

16

32

64
128

XSHELLS energy performance (NR=512, Lmax=426)
GPU (4 V100)
GPU FP32 (4 V100)
VEGA GPU FP64 (4 A100)
VEGA GPU FP32 (4 A100)
Adastra GPU FP64 (8 MI250X)
Adastra GPU FP32 (8 MI250X)
CPU (40 avx512 cores)

H. Frezat, N. Schaeffer (ChEESE2 ) Earth’s core simulations NumPex 8 Nov. 2023 12 / 13



State of the art simulation (DNS) and Objective

2017 : Schaeffer et. al.

2688 x 1504 x 1280

E = 10−7, Re=5000, Pm=0.1

many emergent Earth-like features

short time-span (5% of magnetic diffusion time)

Objective O1: comparable parameters, but x100 to x1000 time-span to study reversals

single-node optimizations: not much left, close to memory bandwidth limit.

parallelization: some room to improve scalability (SPIKE solver, better domain decomposition, ...)

We need subgrid-scale modelling!

H. Frezat, N. Schaeffer (ChEESE2 ) Earth’s core simulations NumPex 8 Nov. 2023 13 / 13



State of the art simulation (DNS) and Objective

2017 : Schaeffer et. al.

2688 x 1504 x 1280

E = 10−7, Re=5000, Pm=0.1

many emergent Earth-like features

short time-span (5% of magnetic diffusion time)

Objective O1: comparable parameters, but x100 to x1000 time-span to study reversals

single-node optimizations: not much left, close to memory bandwidth limit.

parallelization: some room to improve scalability (SPIKE solver, better domain decomposition, ...)

We need subgrid-scale modelling!

H. Frezat, N. Schaeffer (ChEESE2 ) Earth’s core simulations NumPex 8 Nov. 2023 13 / 13



Workshop Efficient discretisation for PDE@Exascale

Accelerating simulations and reaching higher resolutions

Direct numerical simulation (DNS):

∂y

∂t
= f(y)

NDNS

Grids on domain length L and corresponding energy spectrum.

Hardware and optimizations:

Exascale computing.

Hybrid GPU architectures.

1



Workshop Efficient discretisation for PDE@Exascale

Accelerating simulations and reaching higher resolutions

Direct numerical simulation (DNS):

∂y

∂t
= f(y)

NDNS

Grids on domain length L and corresponding energy spectrum.

Hardware and optimizations:

Exascale computing.

Hybrid GPU architectures.

Reduced equations (LES):

Universal small-scale dynamics.

Applying projection T (y) = ȳ.

Typically using a filter.

∂ȳ

∂t
= f(ȳ) + τ(y)︸︷︷︸

T (f(y))−f(T (y))

1



Workshop Efficient discretisation for PDE@Exascale

Accelerating simulations and reaching higher resolutions

Direct numerical simulation (DNS):

∂y

∂t
= f(y)

NDNS

N̄

Grids on domain length L and corresponding energy spectrum.

Hardware and optimizations:

Exascale computing.

Hybrid GPU architectures.

Reduced equations (LES):

Universal small-scale dynamics.

Applying projection T (y) = ȳ.

Typically using a filter.

∂ȳ

∂t
= f(ȳ) + τ(y)︸︷︷︸

T (f(y))−f(T (y))

1



Workshop Efficient discretisation for PDE@Exascale

State of the art: historical

”Historical” – or physical turbu-
lence models (Sagaut, 2006):

Mathematical developments

(Clark et al., 1979): Structural.

Structural

Stability -

Forward +

Backward +

Potential difficulties:

Accumulation of small-scale energy: numerical

instabilities.

Incorrect representation of the unresolved dy-

namics.

Difficulties in SGS modeling for two-dimensional turbulent systems. 2



Workshop Efficient discretisation for PDE@Exascale

State of the art: historical

”Historical” – or physical turbu-
lence models (Sagaut, 2006):

Mathematical developments

(Clark et al., 1979): Structural.

First principles (Smagorinsky,

1963, Leith, 1996): Functional.

Structural Functional

Stability - +

Forward + -

Backward + -

Potential difficulties:

Accumulation of small-scale energy: numerical

instabilities.

Incorrect representation of the unresolved dy-

namics.

Difficulties in SGS modeling for two-dimensional turbulent systems. 2



Workshop Efficient discretisation for PDE@Exascale

State of the art: machine learning

Current models:

Exclusive on stability and correct trans-

fers.

Machine learning as an alternative (Brun-

ton et al., 2020).

Solving a problem from data:

Inputs ȳ.

Output τ .

Model M : ȳ → τ .

”Static”.

Initial experiments on two-dimensional turbulence (Maulik et
al., 2019).

Structural Functional ML

Stability - + -

Forward + - ++

Backward + - ++

3



Workshop Efficient discretisation for PDE@Exascale

Turbulence evaluation metrics

a priori metrics

Prediction of the missing term on a fixed

time-step.

Instantaneous subgrid contribution.

a posteriori metrics

Prediction of the simulation’s trajectory over

a temporal horizon.

0 20 40 60 80 100
t

0

1

2

3

4

5

〈 Φ
2
〉 −〈

Φ
〉 2

Developed turbulence regime

Transitional regime

Decaying scalar regime

Reλ ≈ 160

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
S. 10−3

Temporal evolution of kinetic energy. 4



Workshop Efficient discretisation for PDE@Exascale

a priori learning

Instantaneous loss computation.

Instantaneous (classical) loss

L :=
〈
ℓ(M(ψ̄, ω̄), τω)

〉
x

Optimize only on the next temporal in-

crement t+∆t.

Not perfect: errors can either lead to

stable or unstable predictions.

Examples:

ℓ : = (M(ψ̄, ω̄)− τω)
2

...

ℓ : = τω(log τω −M(ψ̄, ω̄))
5



Workshop Efficient discretisation for PDE@Exascale

a posteriori learning

a posteriori loss

L := ⟨ℓ(ȳpred(t),y(t))⟩x,t
ȳpred ≡ {ω̄pred,M}

y ≡ {ω, τω}

Temporal component in

loss function.

Required to form a con-

tinuous trajectory.

Integrate during training:

solver performance is

important.

Visual sketch of an a posteriori training on one trajectory.

6



Workshop Efficient discretisation for PDE@Exascale

a posteriori learning

a posteriori loss

L := ⟨ℓ(ȳpred(t),y(t))⟩x,t
ȳpred ≡ {ω̄pred,M}

y ≡ {ω, τω}

Temporal component in

loss function.

Required to form a con-

tinuous trajectory.

Integrate during training:

solver performance is

important.

Visual sketch of an a posteriori training on one trajectory.

6



Workshop Efficient discretisation for PDE@Exascale

a posteriori learning

a posteriori loss

L := ⟨ℓ(ȳpred(t),y(t))⟩x,t
ȳpred ≡ {ω̄pred,M}

y ≡ {ω, τω}

Temporal component in

loss function.

Required to form a con-

tinuous trajectory.

Integrate during training:

solver performance is

important.

Visual sketch of an a posteriori training on one trajectory.

6



Workshop Efficient discretisation for PDE@Exascale

Numerical experiments: forced turbulence

Forced turbulence (Graham et al., 2013)

7



Workshop Efficient discretisation for PDE@Exascale

The differentiability requirement

Loss function minimization using gradient
descent (classical for NNs).

Gradient-based mathematical

optimization:

M(y | θ) : argmin
θ

L

⇓
θn+1 = θn − γ∇θL

a priori vs a posteriori : losses

8



Workshop Efficient discretisation for PDE@Exascale

The differentiability requirement

a priori loss gradient:

∇θℓprio(M, τω)

=
∂ℓprio
∂τω

∂τω
∂θ

+
∂ℓprio
∂M

∂M
∂θ

=
∂ℓprio
∂M

∂M
∂θ︸︷︷︸
AD

a posteriori loss gradient:

∇θℓpost(ȳpred(t),y(t))

=
∂ℓpost
∂y

∂y

∂θ
+
∂ℓpost
∂ȳpred

∂ȳpred

∂θ

=
∂ℓpost
∂ȳpred

∫ t

t0

∂ solver

∂θ
+
∂M
∂θ︸︷︷︸
AD

dt′



a priori vs a posteriori : losses

8



Workshop Efficient discretisation for PDE@Exascale

The differentiability requirement

a priori loss gradient:

∇θℓprio(M, τω)

=
∂ℓprio
∂τω

∂τω
∂θ

+
∂ℓprio
∂M

∂M
∂θ

=
∂ℓprio
∂M

∂M
∂θ︸︷︷︸
AD

a posteriori loss gradient:

∇θℓpost(ȳpred(t),y(t))

=
∂ℓpost
∂y

∂y

∂θ
+
∂ℓpost
∂ȳpred

∂ȳpred

∂θ

=
∂ℓpost
∂ȳpred

∫ t

t0

∂ solver

∂θ︸ ︷︷ ︸
Not available

+
∂M
∂θ︸︷︷︸
AD

dt′



a priori vs a posteriori : losses

8



Workshop Efficient discretisation for PDE@Exascale

Technical alternatives

Gradient of the solver w.r.t. model pa-
rameters:

Estimates using numerical derivatives.

Manually implement adjoint.

Re-implementation using auto-

differentiation languages or libraries.

Deep Differentiable Emulators (Frezat

et al., 2023, Nonnenmacher and Green-

berg, 2021)

a posteriori loss gradient:

∂ℓpost
∂ȳpred

∫ t

t0

∂ solver

∂θ︸ ︷︷ ︸
Not available

+
∂M
∂θ︸︷︷︸
AD

dt′



Differentiable programming libraries in Julia
and Python.

9



Workshop Efficient discretisation for PDE@Exascale

Technical alternatives

Gradient of the solver w.r.t. model pa-
rameters:

Estimates using numerical derivatives.

Manually implement adjoint.

Re-implementation using auto-

differentiation languages or libraries.

Deep Differentiable Emulators (Frezat

et al., 2023, Nonnenmacher and Green-

berg, 2021)

a posteriori loss gradient:

∂ℓpost
∂ȳpred

∫ t

t0

∂ solver

∂θ︸ ︷︷ ︸
AD

+
∂M
∂θ︸︷︷︸
AD

dt′



Differentiable programming libraries in Julia
and Python.

9



Workshop Efficient discretisation for PDE@Exascale

Building efficient solvers with JAX

”High-performance numerical comput-
ing and large-scale machine learning re-
search”

.grad(): Computes the gradient of the

function w.r.t. any parameters (auto

differentiation).

.jit(): Compiles and optimizes on the

fly for different architectures.

.pmap(): Parallelize over many GPUs /

CPU nodes.

Writing vectorized code.

Lacking important scientific algorithms

(sparses solvers for e.g.).

A 2d convection code in an annulus geometry
built with JAX in 100-200 LoC, benchmark
TBD.

10



Workshop Efficient discretisation for PDE@Exascale

Objectives

O0. Running dynamo simulation at Re = 5000 for multiple viscous time.

O1. Provide banded solvers with their adjoint for GPUs (and/or JAX)

O2. Optional: couple trained model in Python with high performance solver

O3. Questions ?

11


	Introduction
	Structure of the Earth
	Physics & Governing Equations

	Simulation tools
	Discretization

	Workshop Efficient discretisation for PDE@Exascale

