CoE Hidalgo2
8 partners from 7 countries:

- Instytut Chemii Bioorganicznej Polskiej Akademii Nauk (PSNC) – Poland – Coordination
- University Of Stuttgart (USTUTT) – Germany – Technical Coordination
- ATOS Spain SA (ATOS) – Spain – Quality Manager
- Szechenyi Istvan Egyetem (SZE) – Hungary – Use case owner
- Meteogrid SL (MTG) – Spain – Use case owner
- Universite De Strasbourg (UNISTRA) – France – Use case owner
- Erevnitiko Panepistimiako Institutoto Systimatou Epikoinonion Kai Ypolgiston-EMP (ICCS) – Greece – Data analytics and AI support
- Future Needs Management Consulting LTD (Future Needs) – Cyprus - Dissemination
Use cases

URBAN AIR PROJECT
Evolution of the air in the urban areas considering pollution, wind, comfort and planning

URBAN BUILDINGS
Advanced building models for better integration with architecture. Providing a source term for heat and air pollutants (CO2 and NOx) to the urban air pollution model.

RENEWABLE ENERGY SOURCES
Energy production from renewable sources like wind and solar panels. Solution accustomed to urban and rural areas.

WILDFIRES
Simulation of wildfire atmosphere interactions and smoke dispersion in forest and urban areas.
Outline

• Urban Air Pollution Pilot
• Urban Building Pilot
 • Overview and Objectives of the Urban Building Pilot
 • Workflow presentation
 • Mesh and Partitioning
 • Modeling and discretization
 • Post-processing and data exchange (coupling) I/O
 • Demo
Urban Air Pollution
1. Importance of urban challenges: 55% of the world’s population lives in urban areas now, and 68% by 2050, says UN, see UN DESA at https://population.un.org/wup/.

2. Challenge 1: Air quality
 - WHO: 6.7 million deaths are attributable each year to exposure to ambient and household air pollution, see https://www.who.int/data/gho/data/themes/air-pollution.
 - Many cities are polluted (air quality values are above health-critical values)
 - Protests by citizens and new, stricter regulations by policymakers

3. Challenge 2: Wind comfort and safety
 - Urban wind can cause discomfort for pedestrians and even critical safety situations in particular near high buildings

4. Challenge 3: Urban planning
 - How can urban policymakers mitigate or cease the negative effects of urban challenges?
Visualization and HPDA postprocessing
UAP, CFD Module with OpenFOAM Validation on FAIRMODE Intercomparison exercise on Antwerp
Benchmarking: Parallel Efficiency with OpenFOAM

- Győr geometry with mesh sizes 728k, 3.4M, 14M
- Testruns on 7 architectures
- Parallel efficiency with regard to 1 node
RedSIM: solver for the compressible Euler and Navier-Stokes equation 2nd order FVM on polyhedral meshes

Code features

- Written in C99-style, compiled as C++, avoids C++ features (STL, templates, exceptions, ...)
- Parallel implementations: MPI+Pthread, multi-GPU (genuinely in CUDA)
- Optimized code, with no dependency, runs easily on each platform we tried (HPC, ...)
- One single algorithm and code for 1D, 2D, 3D
- POD-DEIM model order reduction mode
- Integrated in-house real-time 3D visualizer, interactive (digital twin) feature
Urban Building Overview & Objectives
Building sector in the EU [1]:

- 36% of GHG emission
- 40% of final energy consumption

→ Building Energy simulation:

- Accurately assess energy performance of existing buildings
- Identify sources of energy savings (anomalies and areas for improvement)
- Compare and evaluate renovation and/or energy management strategies
- Ensure the optimal management of buildings

Horizon 2050 objectives:

- Double annual energy renovation rates in the next 10 years [2]
- E.g. 700 000 renovation/year in France

Objectives

- Predict energy consumption, thermal comfort and indoor air quality at
 - Building scale
 - Urban scale and beyond
- Integrate the building stock in its environment:
 - Couple with Urban Air Pollution (UAP) model
 - contribution of the building stock (heat and GHG, NOx) to the outdoor air quality model (UAP)
 - improved boundary conditions of the building model (wind speed, outdoor temperature)
 - Improved radiative heat transfer on buildings' envelope, through a better estimation of solar shading
Objectives

BIM = Building information Modelling
BES = Building Energy Simulation
IAQ = Indoor Air Quality
UAP = Urban Air Pollution
OAQ = Outdoor Air Quality
GHG = Greenhouse Gas
Geometry & Mesh & Partitioning
Geometry

Geometric reconstruction of urban model

- **Challenge**: Create multi fidelity representation of buildings, terrain, vegetation, roads, …
- **Tiled web map approach**
 - Distributed data, adapt Level Of Definition (LOD)
 - Constraint: require gluing the tiles
- **Buildings LOD**
 - LOD-0: Oriented bounding box
 - LOD-1: Polygonal extrusion (+roof)
 - LOD-2: IFC
- **Terrain**
 - Elevation from raster images
 - Include roads, parks, railways, rivers, …
- **Vegetation (trees) - urban furniture**
 - Limited information: position, height
 - Use prototypic geometry and parametrize
Building meshes (LOD-0, LOD-1)

• Metadata fetched from the web (OpenStreetMap)
 • Multi polygons with holes

• Building LOD-0
 • Compute 2D oriented bounding box from building footprint
 • Extrusion applied with max height

• Building LOD-1
 • Composed of one or several parts defined by a polygonal extrusion
 • Apply union of all parts: generate one or several volumes for a building

• District/city
 • Collection of buildings
 • Apply union operations with building touching, or even intersecting
 • Optimization: building grouping from bounding box
Building meshes (LOD-2)

- Geometry from Building Information Modeling (BIM)
 - IFC format
 - Surface model
 - Solid model: Swept, B-REP, CSG
- A geometry for each entity of building
 - Often non-conforming, not watertight
 - Allow to filter by entity type: structural, furniture, electric, plumbing, …
 - Mesh generator: Open-Cascade, Carve (IFC++), …

Challenge

- Conformal surface mesh
- Volume mesh: watertight
- Mesh Adaptation
Mesh

Terrain

1. Start by creating a uniform mesh (based on the raster image size)
2. Evaluate the elevation on each node
3. Compute isolines and mesh adaptation (reduce the number of element)
4. Glue each tile

Terrain + Buildings

- Conforming and watertight mesh
- Building (or any object) on a slope requires adapting the height
- Algorithm
 a. Compute difference of planar terrain and building footprint.
 b. Apply terrain elevation.
 c. Adapt building height.
 d. Insert building in the hole and repair mesh intersection.
Parallel Mesh Generation Strategy

Current strategy [MT]

1. From location, determine tiles used [Sequential]
2. Download GIS data (buildings, elevation) [Parallel MT]
3. Polygons repair [Parallel MT]
4. Terrain mesh generation [Parallel MT]
5. Union of building at tile junctions [Sequential]
6. Building mesh generation [Parallel MT]

Next Steps towards full parallel mesh generation [MPI+MT]

- Objectives: large city scale and beyond
- Use distributed computing (MPI)
- Create partitioning of tiles with overlapping (ensure fetch full building description)
- Create parallel mesh
 - Use MT strategy in each process
 - Overlapping zone allows creating full buildings without MPI Comm
Mesh partitioning and simulation

Input
- Mesh of urban model (naturally partitioned thanks to tiled web map)
- Number of partitions requested
- Load balancing: weight parameter assigned to each building (depends on modeling complexity and solver)

Output
- Partitioned mesh used as input of urban building energy modeling

Locality-aware partitioning
- Building grouping
- Interaction with the building's surroundings (solar shading, vegetation and river, ...)

Partitioning strategies:
- Graph-based
 - Mesh connectivity
 - Toolkits: METIS, ParMETIS, SCOTCH, PT-SCOTCH, KaHyPar, Zoltan2, ...
- Geometric:
 - Uses coordinates of mesh entities
 - Toolkits: Zoltan2...

Architecture-Aware Task Placement
- Given a (possibly non-contiguous) allocation of nodes in a parallel computer, reduce application communication costs by assigning interdependent MPI tasks to “nearby” cores within the allocation
- Important in extreme-scale systems

Zoltan2
- Parallel partitioning: MPI+X (multicore, GPU)
- Geometric partitioning
 - MPI+OpenMP
 - Fast and scalable
- Graph partitioning via interfaces to PT-SCOTCH, ParMETIS, ...
- Architecture-Aware Task Placement

![Diagram of Zoltan2's parallel partitioning](image)
Mesh partitioning and simulation

Test case 0: buildings mesh

- Context
 - Building model has no interaction with environment
 - Only buildings mesh, no terrain, no vegetation ...
- Partitioning methods
 - Use only the building listing (no spatial relation) and weights
 - Geometric partitioning
 - Weighted graph partitioning from a triangulation of building barycenter
Mesh partitioning and simulation

Test case 1: fully non-conforming mesh

- **Context**
 - Building model interact with environment and surrounding buildings
 - Building meshes are conforming and watertight
 - Terrain, vegetation mesh are non-conforming

- **Partitioning methods**
 - Geometric partitioning
 - Weighted graph partitioning
 - Buildings: Triangulation of building barycenter + Weighted + Building grouping
 - Terrain (and other structures) are partitioned independently and without constraint
Mesh partitioning and simulation

Test case 2: full conforming mesh partitioning

- **Context**
 - Building model interact with the environment and surrounding buildings
 - Coupling pilots of Hidalgo 2: UAP
 - Weighted graph partitioning
 - Apply on full mesh
 - Start with buildings, then environment constraint with building partitioning
 - Minimize communication cost compared to test case 1

Test case 3: toward extreme number of partitions

- Multigrid approach
- Define coarse mesh (compute at GIS analysis phase)
 - District level with smart cutting (convex hull, …?)
 - Mesh as macro partitioning: each part (or grouping part) will define a subset of micro partitions
- Apply previous methodology in each macro partition

www.hidalgo2.eu
Modeling & discretization
Feel++
- Framework to solve problems based on ODE and PDE
- C++17 (C++20) with a Python layer using Pybind11
- Seamless parallelism with default communicator
- DevOps: CI/CD (docker/apptainer + ubuntu/debian packaging soon spack or guix-hpc)
- Tests: Hundreds of tests run in sequential and parallel C++ and Python
- Usage: Research, R&D, Teaching, Cloud Services
Simulation Tools

Feel++ : some features

- A large range of numerical methods to solve PDEs: cG, dG, hdG, rb/moi
- 0D+t, 1D(+t), 2D(+t), 3D(+t)
- DSEL for Galerkin methods in C++
- De Rham complex : arbitrary order
- Cross the bridge between symbolic and numeric computing
- Automatic differentiation
- Seamless interpolation
- WIP : Use Specx Task-based runtime system > Github

```cpp
auto u = Xh->element();
// expression handling
auto e3 = expr( "2*x*u+v:x::v" );
auto e3v = expr( e3, symbolExpr( "u", dxv( u ) ), symbolExpr( "v", Nx() ) );
// remeshing in seq and //
auto rm = remesh(_mesh=mesh,_params={remeshing specs in json});
// Fast marching : compute distance to range
auto distToBoundary = distanceToRange( _space=Vh, _range=boundaryfaces( mesh ) );
auto distToBoundaryNarrowBand =
    distanceToRange( _space=Vh, _range=boundaryfaces( mesh ),
        _max_distance=3.*mesh->hAverage() );
```
Simulation Tools: Feel++-Toolboxes

1. Core Manuals
The Toolbox Core Manuals describe (i) what is a toolbox (ii) how to setup simulation models thanks to JSON files and (iii) configure command line options of the toolboxes.

Coefficient Form PDEs
A coefficient form PDE toolbox to solve N coupled nonlinear PDEs.

Computational Fluid Mechanics
The computation fluid mechanics solves from low to high Reynolds number flows and includes some turbulence models.

Computational Solid Mechanics
A toolbox to solve non-linear elasticity problems that supports (i) large deformations, (ii) large displacements; (iii) Compressible, nearly incompressible materials and (iv) Multi-material.

Electric
A Toolbox that solves Gauss's Law equation and compute the electric potential and field of a given charge distribution.

Fluid Structure Interaction
A toolbox solving fluid-structure interaction problems using ALE formulation and staggered schemes such as Dirichlet-Neumann, Generalized Robin-Neumann, and Robin-Robin.

Heat and Fluid
A toolbox that solves the heat and fluid equations including convection, conduction effects. It is mostly used for aerothermal problems.

Heat Transfer
A toolbox to solve heat transfer problems including convection, convection and black body radiation including non-linear problems and temperature dependent properties.

Hybridized Discontinuous Galerkin Toolbox
Hybridized Discontinuous Galerkin Toolbox case studies, supporting elliptic and parabolic problems in 2D and 3D including advection, diffusion and reaction, elasticity, Stokes and coupled problems.

Maxwell
A toolbox for the simulation of electromagnetic fields in 3D including static, low frequency, and high frequency applications and non-linear materials.

Multiflow Toolbox
A toolbox to solve multi-flow problems using the level set method.

Thermo-Electric
A toolbox to solve the heat equation coupled to the electric currents equation including temperature-dependent material properties.

docs.feelpp.org/toolboxes/latest
Masks and View factor using Feel++

View factors
Describe the fraction of radiation leaving a surface and hitting a second surface
- Purely geometric quantities
Numerical method: Monte Carlo and ray tracing
- Geometries with obstructions
- Only gray surfaces for the moment, but specular could be considered

Challenges
- Efficient computation of integrals involving view factors
- Computation of view factors for specular surfaces (several bounces)
- Efficient storage

Solar masks
Describe the percentage of blocked solar radiation for each building surface (walls, roofs) and ray direction
- Caused by surrounding buildings, vegetation, urban furniture
- Can be computed per surface or per building

Numerical method: Monte Carlo and ray tracing

Challenges
- Computation on large-scale mesh and storage

Use Feel++ identified by PC1- Exa-MA
Multizone modeling using Modelica

- Multizone model for building energy simulations
- Use Modelica language with extensive support for building energy modeling
- Multifidelity models: LOD-0, LOD-1
- Generate FMU (Mo transformed into C/C++)
- Sequential (some MT support)
Finite Element modeling/ROM using Feel++

Predict energy consumption, thermal comfort and internal air quality
- Detailed description of internal air temperature
- Fast computations and scenario evaluation

Models
- Steady state building model
- Unsteady model accounting for multi-layer walls and window openings
- Solar radiation and shading from the surrounding environment

Numerical methods
- Finite element and reduced basis methods
- Data assimilation for parameter estimation
- Parallel-in-time algorithms
- Model order reduction using eg RB

Challenges:
- Large number of parameters
- 3D-0D couplings

Use Feel++ identified by PC1- Exa-MA
Challenges

Hybrid computing

- Strong link to Mesh Partitioning/Load balancing (see mesh section)
- Finite element method: use our DSEL to hide "details" (→ Mfem, Kokkos, Eigen, …)
- Reduced basis model (offline see above, online opencl implementation, large scale DB storage)
- Solar mask and view factors computing
 - Current CPU implementation very fast. testbed for specx (task-based runtime execution)
 - Well suited for GPU computing
 - Should we store the masks and view factors or recompute them in situ? (probably both options are relevant)
- Multizone models: currently a strong bottleneck as we do not control the generated code
Post Processing I/O & Data Exchange
Save buildings simulation outputs

- Outputs: Temperature, Humidity, Energy, CO2, NOx, ...
- Frequency: at each time step (or over time points)
- Measures location:
 - On each building (global values)
 - On each building face
 - On each node/element of the (surface) mesh

Use cases

- Statistical analysis
 - Reporting generation, plot chart: line, bar, pie, ...
 - Compute indicator: comfort, energy, ...
- 3D visualization: ParaView, Ktirio, ...
- Data exchange (coupling with another application)
- Restart simulation
Post Processing : I/O

File formats

- CSV : Sequential text file, not really adapted to //
- JSON : Handle complex data, nice to describe metadata
- HDF5 : Parallel format with many features
- Ensight Gold : 3D Visualization format (binary and writing in // using mpi-IO)
- XDMF+HDF5 : 3D Visualization format

Scaling up

- IO is currently a bottleneck to scale up (many cores/nodes)
- One file per proc : generally not recommended
- Current solutions identified : HDF5, SIONlib, ADIOS
- Strategy envisaged
 - Asynchronous I/O [1] : background thread using task managers, hiding I/O latency
 - Caching with node-local memory and storage [2]
 - HDF5 and Virtual Object Layer (VOL)
 - Same API, but allows different underlying storage mechanisms

[1]: https://github.com/hpc-io/vol-async
[2]: https://github.com/hpc-io/vol-cache
Multiphysics coupling : PDEs

- Coupling interface through mesh discretization
- Strong/weak coupling : one-way or two-way
- Our application : coupling Urban Building and Urban Air Pollution pilots

Requirements

- Data exchange between two (or more) simulation frameworks in HPC context.
- Communication peer-to-peer (objective is to reduce the use of file system)
- Unbalanced computational resource

Potential solution for coupling solution between UAP and UB

- MUSCLE3
Next Steps
Identified Challenges/Bottlenecks

Current/Next Steps

- Currently benchmarking on EuroHPC systems (LUMI, Vega, Discoverer,...) + PSNC systems (Poland)
- Develop multi-fidelity models for buildings
- Automate workflow
- Vegetation, urban furniture
- Coupling with UAP

Identified Challenges/Bottlenecks

- Large-scale mesh generation : surface mesh and volume mesh (adapted for CFD)
- Parallel mesh adaptation
- Multi fidelity representation (geometry and physics)
- Mesh and physic-based/LOD partitioning and load balancing
- I/O
- Multiphysics coupling
Thank you for your attention

www.hidalgo2.eu
e-mail: office@hidalgo2.eu

Contact Cemosis

Christophe Prud'homme
christophe.prudhomme@cemosis.fr

Vincent Chabannes
vincent.chabannes@cemosis.fr
Acknowledgments

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Poland, Germany, Spain, Hungary, France, Cyprus under grant agreement number: 101093457.

This publication expresses the opinions of the authors and not necessarily those of the EuroHPC JU and Associated Countries which are not responsible for any use of the information contained in this publication.

Co-funded by the European Union

Disclaimer

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European High Performance Computing Joint Undertaking (JU) and Poland, Germany, Spain, Hungary, France, Cyprus. Neither the European Union nor the granting authority can be held responsible for them.